IEEE Standard for Distributed Interactive Simulation—Application Protocols

Sponsor
SISO Standards Activity Committee
of the
IEEE Computer Society
Abstract: Data messages, known as Protocol Data Units (PDUs), that are exchanged on a network among simulation applications are defined. These PDUs are for interactions that take place within specified domains called protocol families, which include Entity Information/Interaction, Warfare, Logistics, Simulation Management, Distributed Emission Regeneration, Radio Communications, Entity Management, Minefield, Synthetic Environment, Simulation Management with Reliability, Information Operations, Live Entity Information/Interaction, and Non-Real-Time protocol.

Keywords: data messages, Distributed Interactive Simulation, IEEE 1278.1™, protocol data units (PDUs), simulation network
Notice and Disclaimer of Liability Concerning the Use of IEEE Documents: IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

Use of an IEEE Standard is wholly voluntary. IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon any IEEE Standard document.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained in its standards is free from patent infringement. IEEE Standards documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

Translations: The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE should be considered the approved IEEE standard.

Official Statements: A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered the official position of IEEE or any of its committees and shall not be considered to be, nor be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position of IEEE.

Comments on Standards: Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important to ensure that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases where the matter has previously been addressed. Any person who would like to participate in evaluating comments or revisions to an IEEE standard is welcome to join the relevant IEEE working group at http://standards.ieee.org/develop/wg/.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854-4141
USA

Photocopies: Authorization to photocopy portions of any individual standard for internal or personal use is granted by The Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
Notice to users

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and adoption by public authorities and private users, the IEEE does not waive any rights in copyright to this document.

Updating of IEEE documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website or contact the IEEE at the address listed previously. For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEE-SA Website.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata periodically.
Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website at http://standards.ieee.org/about/sash/patcomm/patents.html. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.
Participants

At the time this draft recommended practice was submitted to the IEEE-SA Standards Board for approval, the Distributed Interactive Simulation (DIS) Product Development Group had the following membership:

James M. McCall, Chair
Robert Murray, Vice Chair
Robert Byers, Secretary
Graham Shanks, Drafting Group Editor

The DIS Product Development Group was assisted by the following past members of the DIS Product Development group and the members of the other working groups as listed:
Directed Energy

Riley Rainey, *Subgroup Lead until 2006*, and **Joseph Sorroche**, *Subgroup Lead from 2006*

<table>
<thead>
<tr>
<th>Alan Berry</th>
<th>Michelle Creedon</th>
<th>Stan Patterson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaron Birenboim</td>
<td>Ryan Gray</td>
<td>Tuan Pham</td>
</tr>
<tr>
<td>Bill Burckel</td>
<td>Frank Hill</td>
<td>Bob Praus</td>
</tr>
<tr>
<td>Chris Burns</td>
<td>Friel Joseph</td>
<td>Barry Prins</td>
</tr>
<tr>
<td>Pat Cannon</td>
<td>Todd Kellett</td>
<td>Jan Roubidoux</td>
</tr>
<tr>
<td>Timothy Clarke</td>
<td>Bill Klein</td>
<td>David Schafer</td>
</tr>
<tr>
<td>Ana Cooksey</td>
<td>Tony Lashley</td>
<td>Charles T. Vrahnos</td>
</tr>
</tbody>
</table>

Emissions

Alan Berry, *Subgroup Lead*

<table>
<thead>
<tr>
<th>Tom Bourne</th>
<th>Russell Grieb</th>
<th>Scott Radke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larry Boyce</td>
<td>David Haber</td>
<td>Kevin Richardson</td>
</tr>
<tr>
<td>Robert Byers</td>
<td>Joseph Hainline</td>
<td>Bill Rivera</td>
</tr>
<tr>
<td>Steve Casto</td>
<td>Frank Hill</td>
<td>Peter Ross</td>
</tr>
<tr>
<td>Mary Christopher</td>
<td>William Hinkle</td>
<td>Randy Schuetz</td>
</tr>
<tr>
<td>Glenn Cicero</td>
<td>Todd Hoeman</td>
<td>Ed Scott</td>
</tr>
<tr>
<td>Timothy Daigle</td>
<td>Paul Hoshall</td>
<td>Brian T. Smith</td>
</tr>
<tr>
<td>Timothy DiVecchia</td>
<td>Douglas Jones</td>
<td>Joseph Sorroche</td>
</tr>
<tr>
<td>Hoang Doan</td>
<td>Stephen Jones</td>
<td>Mark Speed</td>
</tr>
<tr>
<td>Gary England</td>
<td>Michael McCaslin</td>
<td>Jerry Szulinski</td>
</tr>
<tr>
<td>Grayden Figart</td>
<td>Patrick Merlet</td>
<td>Steven Westerhouse</td>
</tr>
<tr>
<td>Jeff Fu</td>
<td>Thomas L. Meyer</td>
<td>Scott Wilson</td>
</tr>
<tr>
<td>Damian Gallegos</td>
<td>Steve Michels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steve Padilla</td>
<td></td>
</tr>
</tbody>
</table>

IFF

Frank Hill, *Subgroup Lead and Mode 5/S IFF Study Group Chair*

<table>
<thead>
<tr>
<th>Bob Baker</th>
<th>Carrie Hardin</th>
<th>Ken Peplow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelby Barrett</td>
<td>Dave Hershman</td>
<td>Wilfredo Perez</td>
</tr>
<tr>
<td>Alan Berry</td>
<td>Jim Hollenbach</td>
<td>Mikel Petty</td>
</tr>
<tr>
<td>Larry Boyce</td>
<td>Jae Jun Hwang</td>
<td>Guillaume Radde</td>
</tr>
<tr>
<td>Gary Burkholder</td>
<td>Douglas Jones</td>
<td>Bill Rivera</td>
</tr>
<tr>
<td>James Chambers</td>
<td>Jeffery Kraisser</td>
<td>Peter Ross</td>
</tr>
<tr>
<td>Louis Chan</td>
<td>Kimberly Larsen</td>
<td>John Seereiter</td>
</tr>
<tr>
<td>Bang Choon</td>
<td>Larry Lawrence</td>
<td>Ray Shellman</td>
</tr>
<tr>
<td>Mary Christopher</td>
<td>Rick Levin</td>
<td>Van Sickle</td>
</tr>
<tr>
<td>Mark Crnarich</td>
<td>Wayne Lindo</td>
<td>Robert Steffles</td>
</tr>
<tr>
<td>Timothy Daigle</td>
<td>David Long</td>
<td>David Taylor</td>
</tr>
<tr>
<td>Lisa Danger</td>
<td>Lee Marden</td>
<td>Jan Tegner</td>
</tr>
<tr>
<td>Jonathan Davis</td>
<td>Lance Marrou</td>
<td>Joseph Theis</td>
</tr>
<tr>
<td>Em Delahostria</td>
<td>Edward McCall</td>
<td>Allen Turco</td>
</tr>
<tr>
<td>Jennifer Dyson</td>
<td>Sandra McPherson</td>
<td>Emerson Vallo</td>
</tr>
<tr>
<td>Winston Fairbrother</td>
<td>Michael Montgomery</td>
<td>Mike Van Boening</td>
</tr>
<tr>
<td>Daniel Falbe</td>
<td>Scott Moore</td>
<td>Rene Verhage</td>
</tr>
<tr>
<td>Jeffrey Fu</td>
<td>Michael Myjak</td>
<td>Brian Wharry</td>
</tr>
<tr>
<td>Michael Gagliano</td>
<td>Tollman Oxford</td>
<td>Scott Wilson</td>
</tr>
<tr>
<td>Juan Garcia</td>
<td>Donald Neal</td>
<td>Joseph Zehnle</td>
</tr>
<tr>
<td>Jerry Gibson</td>
<td>Steve Padilla</td>
<td>Albert Zhong</td>
</tr>
<tr>
<td>James Globe</td>
<td>Adam Parkinson</td>
<td></td>
</tr>
</tbody>
</table>
Information Operations
Lee Anthony, Subgroup Lead

Robert Adams
Richard Anderson
Alan Berry
Larry Boyce
David Cates
Mary Christopher
Donna Clapp
Jeff S. Dean

Hurley Fontenot
Patrick Getchel
Robert B. Hartlage
Frank Hill
Gary Jett
Ray Larrumbide
Sara Meyer
Donald Neal

Elizabeth Park
Mike Patterson
Kevin Powell
Kevin P. Richardson
Richard Salinas
Randy J. Schuetz
Clement D. Smartt
Scott Waldron

Radio Communications
Stephen Jones, Subgroup Lead

Brian Ambroiso
Timothy Bartolo
Alan Berry
John Burkley
Robert Butterfield
Robert Byers
Eddyta Christner
Mary Christopher
Grayden Figart

Paul Halliday
Brian Herdon
Frank Hill
William Hinkle
Paul Houldsworth
Lance Legan
Lance Marrou
Patrick Merlet

Robert Murray
Nat Napetano
James Robinson
Peter Ross
Peter Ryan
Mark Sladen
Joseph Sorroche
Steven Weiss
Joseph Zehnle

Time
Randy Saunders, Subgroup Lead

Mary Christopher
Frank Hill
Douglas Jones

Robert Murray
Steve Padilla

Graham Shanks
Mark Sladen
Tony Valle

Transfer Ownership
Frank Hill, Subgroup Lead and Transfer Control Study Group Chair

Patrick Merlet, Transfer Control Study Group Vice Chair

Bob Baker
Larry Boyce
Robert Boyles
Robert Byers
Gary Burkholder
Jim Chaney
Louis Chan
Steve Ciallella
Mark Crnarich
Lisa Danger
E.G. Delahostria
Eric Dumais
Winston Fairbrother
Daniel Falbe
Miles Fidelman
Michael Gagliano
Jerry Gibson

James Gill
Scott Hansen
Carrie Hardin
Dave Hershman
Don Johnson
Stephen Jones
Jeffery Kraisser
Rick Levin
Wayne Lindo
Dave Long
Lee Marden
Edward McCall
Bonnie G. McDaniel
Scott Moore
John Morrison
Donald Neal

Scott Newman
Huat Ng
Jonathan Prescott
Wilfredo Perez
Bill Rivera
Ray Shellman
Robert Steffes
Jan Tegner
Joseph Theis
Allen Turco
Emerson R. Vallo
Mike Van Boening
Garth Van Sickle
Gary Vincent
Scott Wilson
Variable Records

Robert Murray, Subgroup Lead

Robert Butterfield Brian Herndon Steve Padilla
Robert Byers Frank Hill Bill Rivera
Mary Christopher Stephen Jones John Saicawalo
Ed Colunga Douglas LaFont Chad Simkins
Grayden Figart Lance Marrou Joseph Sorroche
Damian Gallegos Mark McCall Jeff Wakefield

Warfare

Frank Hill, Graham Shanks, Subgroup Leads

Robert Byers William Hinkle Randy Saunders
Troy Havener Terrence McDermott Terry Tyson

The following members of the individual balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention.

Keith Chow Greg Luri Graham Shanks
Mary Christopher Lance Marrou Steven Sheasby
Thomas Dineen Edward McCall Gil Shultz
Uwe Dobrindt James M. McCall James Smith
Sourav Dutta Sara Meyer Joseph Sorroche
David Fuschi Steven Monson Thomas Starai
Randall Groves Thomas Mullins Eugene Stoudenmire
Frank Hill Robert Murray Walter Struppler
Susan Hilt Christopher Rouget Gerald Stueve
Werner Hoelzl Peter Ryan Marcy Stutzman
Robert Holibaugh Randy Saunders Ralph Weber
John Jinkerson Bartien Sayogo M. Karen Woolf
Rameshchandra Ketharaju Randy Schuetz Janusz Zalewski
James Kogler

Copyright © 2012 IEEE. All rights reserved.
When the IEEE-SA Standards Board approved this standard on 30 August 2012, it had the following membership:

Richard H. Hulett, Chair
John Kulick, Vice Chair
Robert Grow, Past Chair
Konstantinos Karachalios, Secretary

Satish Aggarwal
Masayuki Ariyoshi
Peter Balma
William Bartley
Ted Burse
Clint Chaplin
Wael Diab
Jean-Philippe Faure
Alexander Gelman
Paul Houzé
Jim Hughes
Young Kyun Kim
Joseph L. Koepfinger*
David J. Law
Thomas Lee
Hung Ling
Oleg Logvinov
Ted Olsen
Gary Robinson
Jon Walter Rosdahl
Mike Seavey
Yatin Trivedi
Phil Winston
Yu Yuan

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Richard DeBlasio, DOE Representative
Michael Janezic, NIST Representative

Don Messina
IEEE Standards Program Manager, Document Development

Michael D. Kipness
IEEE Client Services Manager, Professional Services
Introduction

This edition of IEEE Std 1278.1 supersedes both IEEE Std 1278.1-1995 and the material included in the IEEE Std 1278.1a-1998 amendment. Distributed Interactive Simulation (DIS) is a government/industry initiative to define an infrastructure for linking simulations of various types at multiple locations to create realistic, complex, virtual worlds for the simulation of highly interactive activities. This infrastructure brings together systems built for separate purposes, technologies from different eras, products from various vendors, and platforms from various services and permits them to interoperate. DIS exercises are intended to support a mixture of virtual entities with computer-controlled behavior (computer-generated forces), virtual entities with live operators (human-in-the-loop simulators), live entities (operational platforms and test and evaluation systems), and constructive entities (wargames and other automated simulations). DIS draws heavily on experience derived from the Simulation Networking (SIMNET) program developed by the Advanced Research Projects Agency (ARPA), adopting many of SIMNET’s basic concepts and heeding lessons learned.

For DIS to take advantage of currently installed and future simulations developed by different organizations, a means had to be found for assuring interoperability between dissimilar simulations. These means were developed in the form of industry consensus standards. The open forum (including government, industry, and academia) chosen for developing these standards was a series of semiannual Workshops on Standards for the Interoperability of Distributed Simulations that began in 1989. The workshops resulted in several IEEE standards and recommended practices.

The relationship between the component documents constituting the set of IEEE DIS documents is shown in the following figure. Used together, these standards and recommended practices will help produce an interoperable simulated environment.

Documentation relationships

The interoperability components addressed by these standards and recommended practices are as follows:

- Application protocols
- Communication services and profiles
- Distributed simulation engineering and execution
- Verification, validation, and accreditation
IEEE Std 1278.1-2012 defines the format and semantics of data messages, also known as Protocol Data Units (PDUs), that are exchanged among simulation applications and simulation management. The PDUs provide information concerning simulated entity states, types of entity interactions that take place in a DIS exercise, data for management and control of a DIS exercise, simulated environment states, aggregation of entities, and the transfer of ownership of entities. This standard also specifies the communication services to be used with each of the PDUs.

An additional, non-IEEE document is required for use with IEEE Std 1278.1-2012. This document is titled Enumerations for Simulation Interoperability and is available from the Simulation Interoperability Standards Organization, Orlando, Florida.

IEEE Std 1278.2™-1995 defines the communication services required to support the message exchange described in IEEE Std 1278.1-2012. In addition, IEEE Std 1278.2-1995 provides several communication profiles that meet the specified communications requirements.

Together IEEE Std 1278.1-2012 and IEEE Std 1278.2-1995 provide the necessary information exchange for the communications element of DIS.

IEEE Std 1730™-2010 is a recommended practice defining the processes and procedures that should be followed by users of distributed simulations to develop and execute their simulations; it is intended as a higher level framework into which low-level management and systems engineering practices native to user organizations can be integrated and tailored for specific uses. This recommended practice is intended to replace IEEE Std 1278.3™-1996. This recommended practice is used in conjunction with IEEE Std 1278.1-2012 and IEEE Std 1278.2-1995.

IEEE Std 1278.4™-1997 provides guidelines for verifying, validating, and accrediting a DIS exercise. This recommended practice, used in conjunction with IEEE Std 1730-2010, presents data flow and connectivity for all proposed verification and validation activities and provides rationale and justification for each step.

The principal changes between IEEE Std 1278.1™-1995 and IEEE Std 1278.1a™-1998 and the present standard are as follows:

a) Extensive clarification of requirements throughout the standard.
b) The general requirements have been expanded to cover detailed requirements related to simulations, enumerations, objects, heartbeats, timeouts, thresholds, gateways, and communication services.
c) All identifiers used in the standard have been clarified, and consistent, simplified terminology has been adopted.
d) To provide flexibility and reduce the number of heartbeats, entity heartbeats are now defined by entity kind, domain, and whether the entity is moving or stationary.
e) A new Information Operations (IO) family has been added along with two new PDUs, the IO Action PDU and IO Report PDU, to support information warfare.
f) The Electromagnetic Emission PDU has been clarified, and a new jammer field has been added using an existing padding field to better support a wider range of multiresolution simulations.
g) A new Directed Energy Fire PDU has been added to support high-fidelity directed energy engagements.
h) A new Entity Damage Status PDU has been added to reflect high-fidelity damage to an entity.

a Information on references can be found in Clause 2.

b The numbers in brackets correspond to those of the bibliography in Annex J.
i) The Transfer Control function has been renamed the Transfer Ownership function, and the Transfer Control Request PDU has been retitled the Transfer Ownership PDU. The entire Transfer Ownership function has been revised to improve its functionality.

j) Transponder and Interrogator requirements have been updated to support high-fidelity Mode 5 Identification Friend or Foe (IFF) and Mode S systems.

k) Time requirements have been extensively clarified and revised.

l) Dead reckoning requirements have been updated including the addition of a new quaternion equation. Annex E Dead Reckoning has been completely revised to clarify requirements, although all the existing formulas have been retained.

m) The Articulation Parameter record found in the Entity State and other PDUs has been renamed the Variable Parameter record to denote that its original design supports more than just its use for articulated and attached parts records. This now provides a way for additional attribute data to be added to entities and detonation characteristics to be added to the Detonation PDU.

n) A new Attribute PDU has been added to support DIS extensibility.

o) The Warfare—General requirements subclause (5.4.2) has been rewritten to incorporate the use of the Fire and Detonation PDUs for expendables and the use of the Detonation PDU for non-munition explosions.

p) The Transmitter PDU was revised to add the capability to have variable Transmitter Parameters records in addition to having a single Modulation Parameters record and multiple Antenna pattern records.

q) Entity separations have been addressed by clarifying how it is to be done for various situations including for multistage missiles and submunition portrayal.

r) Seven new annexes have been added as follows:

1) Annex A. Warfare (normative). Provides additional requirements related to PDUs used to support the warfare functional area.

2) Annex B. Specific transponder and interrogator systems (normative). Contains detailed requirements applicable to specific transponder and interrogator systems.

3) Annex C. Radio systems (normative). Contains detailed requirements applicable to specific radio systems.

4) Annex D. Objects (normative). Contains detailed requirements related to object types and primary and secondary identifiers.

5) Annex F. Heartbeats, timeouts, and thresholds (informative). Provides guidance on how to maintain interoperability when some simulations have implemented the new entity timeout requirements and some have not.

6) Annex G. Time calculations and uses (informative). Provides additional information on time and its uses in a distributed simulation environment.

7) Annex H. Transfer ownership function (normative). Contains detailed requirements for transfer ownership.
Contents

1 Overview .. 1

1.1 General.. 1
1.2 Scope... 1
1.3 Purpose... 2
1.4 Terminology... 2
1.5 Conventions used in this document .. 2
1.6 Key concepts ... 2

2 Normative references .. 10

3 Definitions, special terms, acronyms, and abbreviations .. 11

3.1 Definitions .. 11
3.2 Special terms ... 19
3.3 Acronyms and abbreviations .. 21

4 General requirements .. 26

4.1 General.. 26
4.2 DIS exercise ... 26
4.3 Issuing simulation .. 41
4.4 Issuance of PDUs .. 41
4.5 Receipt of PDUs ... 41
4.6 Time .. 41

5 PDUs for DIS .. 48

5.1 Purpose.. 48
5.2 PDU header .. 48
5.3 Entity information/interaction ... 51
5.4 Warfare .. 65
5.5 Logistics .. 79
5.6 Simulation management .. 89
5.7 Distributed emission regeneration .. 112
5.8 Radio and intercom communications ... 138
5.9 Entity management .. 150
5.10 Minefield .. 176
5.11 Synthetic Environment .. 183
5.12 Simulation management with reliability .. 191
5.13 Information operations ... 216

6 Detailed requirements .. 219

6.1 Representation of data .. 219
6.2 Basic data types and records ... 228
6.3 General requirements ... 336

7 DIS PDU contents ... 337

7.1 Introduction ... 337
7.2 Entity Information/Interaction protocol family ... 337
IEEE Standard for Distributed Interactive Simulation—Application Protocols

IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, health, or environmental protection, or ensure against interference with or from other devices or networks. Implementers of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading "Important Notice" or "Important Notices and Disclaimers Concerning IEEE Documents." They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

1 Overview

1.1 General

This standard explains the information technology protocols required for Distributed Interactive Simulation (DIS) applications. This standard is divided into nine clauses. Clause 1 provides the scope of the standard and details key DIS concepts that will help in understanding the context of this standard. Clause 2 lists references to other standards that are useful in applying this standard. Clause 3 provides definitions of terms, acronyms, and abbreviations that are used in the standard. It is imperative for the user of this standard to thoroughly review these definitions before proceeding on to the other clauses. Clause 4 contains requirements concerning the content and use of Protocol Data Units (PDUs) in DIS exercises. Clause 5 defines the various PDUs and their fields. Clause 6 contains requirements concerning the representation of data within the PDUs. Clause 7 defines the layout and contents of the PDUs. Clause 8 contains the definition of a protocol specifically for applications operating in non-real time. Clause 9 is a stand-alone, self-contained clause that contains both the requirements and the PDU definitions for use by live entities participating in a DIS exercise.

1.2 Scope

This standard is part of a set of standards and recommended practices for DIS applications. Each standard and recommended practice in the set describes one or more of the elements that constitute the DIS environment. As a whole, the set of standards and recommended practices defines an interoperable simulation environment. This particular standard addresses the application protocols.