Specification for unfired fusion welded pressure vessels

This publication is not to be regarded as a British Standard
Publishing and copyright information

The BSI copyright notice displayed in this document indicates when the document was last issued.

ICS 23.020.30

ISBN 978 0 580 76338 0

© The British Standards Institution 2012

Published by BSI Standards Limited 2012

The following BSI references relate to the work on this standard:

Committee reference PVE/1

Publication history

First published as BS 5500 March 1976;
Second edition January 1982;
Third edition January 1985;
Fourth edition January 1988;
Fifth edition January 1991;
Sixth edition January 1994;
Seventh edition January 1997;
First published as PD 5500 January 2000;
Second edition January 2003;
Third edition January 2006;
Fourth edition January 2009;
Fifth (present) edition June 2012

Amendments issued since publication

<table>
<thead>
<tr>
<th>Date</th>
<th>Text affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PD 5500:2012
Contents

Foreword xv

Section 1. General

1.1 Scope 1/1
1.2 Interpretation 1/3
1.3 Definitions 1/3
1.4 Responsibilities 1/4
1.4.1 Responsibilities of the purchaser 1/4
1.4.2 Responsibilities of the manufacturer 1/5
1.4.3 Responsibilities of the Inspecting Authority 1/9
1.4.4 Certificate of Conformance 1/9
1.5 Information and requirements to be agreed and to be documented 1/12
1.5.1 Information to be supplied by the purchaser 1/12
1.5.2 Information to be supplied by the manufacturer 1/12
1.6 Thicknesses 1/13

Section 2. Materials

2.1 Selection of materials 2/1
2.1.1 General 2/1
2.1.2 Materials for pressure parts 2/1
2.1.3 Materials for non-pressure parts 2/24
2.2 Materials for low temperature applications 2/24
2.3 Nominal design strength 2/26
2.3.1 General 2/26
2.3.2 Notation 2/27
2.3.3 Time-independent design strength 2/27
2.3.4 Time-dependent design strength 2/29

Section 3. Design

3.1 General 3/1
3.2 Application 3/2
3.2.1 Consideration of loads 3/2
3.2.2 Design criteria 3/3
3.2.3 Design pressure 3/4
3.2.4 Maximum design temperature 3/4
3.2.5 Minimum design temperature 3/5
3.2.6 Thermal loads 3/5
3.2.7 Wind and earthquake loads 3/5
3.3 Corrosion, erosion and protection 3/5
3.3.1 General 3/5
3.3.2 Additional thickness to allow for corrosion 3/6
3.3.3 Linings and coatings 3/6
3.3.4 Wear plates 3/6
3.4 Construction categories and design stresses 3/7
3.4.1 Construction categories 3/7
3.4.2 Design stresses 3/8
3.5 Vessels under internal pressure 3/9
3.5.1 Cylindrical and spherical shells 3/9
3.5.2 Dished ends 3/11
3.5.3 Cones and conical ends 3/16
3.5.4 Openings and nozzle connections 3/24
3.5.5 Flat ends and flat plates 3/77
3.5.6 Spherically domed and bolted ends of the form shown in Figure 3.5-39 3/89
3.6 Vessels under external pressure 3/96
3.6.1 General 3/96
3.6.2 Cylindrical shells 3/99
3.6.3 Conical shells 3/104

© The British Standards Institution 2012 • i
3.6.4 Spherical shells 3/107
3.6.5 Hemispherical ends 3/107
3.6.6 Torispherical ends 3/107
3.6.7 Ellipsoidal ends 3/108
3.6.8 Procedure by which the departure from the mean circle may be obtained 3/108
3.7 Supports, attachments and internal structures 3/133
3.7.1 General 3/133
3.7.2 Supports 3/133
3.8 Bolted flanged connections 3/134
3.8.1 General 3/134
3.8.2 Notation 3/142
3.8.3 Narrow-faced gasketted flanges 3/144
3.8.4 Full-faced flanges with soft ring type gaskets 3/151
3.8.5 Ungasketted seal welded flanges 3/152
3.8.6 Reverse narrow-face flanges 3/152
3.8.7 Reverse full-face flanges 3/153
3.8.8 Full-faced flanges with metal to metal contact 3/154
3.9 Flat heat exchanger tubesheets 3/196
3.9.1 Notation 3/196
3.9.2 Characteristics of perforated plates 3/199
3.9.3 Tubesheets of exchangers with floating heads or U-tubes 3/201
3.9.4 Tubesheets of fixed tubesheet exchangers 3/210
3.9.5 Allowable shell and tube longitudinal stresses 3/217
3.9.6 Allowable tube joint end load 3/218
3.9.7 Tubesheet flanged extension with narrow-face gasket 3/219
3.10 Design of welds 3/222
3.10.1 General 3/222
3.10.2 Welded joints for principal seams 3/223
3.10.3 Welded joints for other than principal seams 3/225
3.10.4 Welded joints in time dependent applications 3/226
3.11 Vessels with external jackets or limpet coils 3/226
3.11.1 General 3/226
3.11.2 Jacketted cylindrical shells 3/226
3.11.3 Welded jacket connections 3/227
3.11.4 Cylindrical shells with limpet coils 3/230
3.12 Manholes, inspection openings and quick release openings 3/232
3.13 Protective devices for excessive pressure or vacuum 3/232
3.13.1 Application 3/232
3.13.2 Capacity of relief device(s) 3/233
3.13.3 Pressure setting of pressure relieving devices 3/233

Section 4. Manufacture and workmanship
4.1 General aspects of construction 4/1
4.1.1 General 4/1
4.1.2 Material identification 4/1
4.1.3 Order of completion of weld seams 4/2
4.1.4 Junction of more than two weld seams 4/2
4.1.5 Localized thinning 4/2
4.1.6 Rectification of departures from tolerance 4/2
4.2 Cutting, forming and tolerances 4/2
4.2.1 Cutting of material 4/2
4.2.2 Forming of shell sections and plates 4/3
4.2.3 Assembly tolerances 4/6
4.2.4 Tolerances for vessels subject to internal pressure 4/7
4.2.5 Tolerances for vessels subject to external pressure 4/11
4.2.6 Structural tolerances 4/12
4.3 Welded joints 4/12
4.3.1 General 4/12
4.3.2 Welding consumables 4/12
4.3.3 Preparation of plate edges and openings 4/13
4.3.4 Assembly for welding 4/13
4.3.5 Attachments and the removal of temporary attachments 4/13
4.3.6 Butt joints 4/14
4.3.7 Welding: general requirements 4/15
4.4 Heat treatment 4/15
4.4.1 Preheat requirements 4/15
4.4.2 Normalizing: ferritic steels 4/16
4.4.3 Post-weld heat treatment 4/16
4.4.4 Methods of heat treatment 4/17
4.4.5 Post-weld heat treatment procedure 4/18
4.4.6 Mechanical properties after heat treatment 4/21
4.5 Surface finish 4/22

Section 5. Inspection and testing
5.1 General 5/1
5.2 Approval testing of fusion welding procedures 5/2
5.3 Welder and operator approval 5/5
5.4 Production control test plates 5/6
5.4.1 Vessels in materials other than 9% Ni steel 5/6
5.4.2 9% Ni steel vessels 5/6
5.5 Destructive testing 5/6
5.6 Non-destructive testing 5/7
5.6.1 General 5/7
5.6.2 Parent materials 5/7
5.6.3 Components prepared for welding 5/8
5.6.4 Non-destructive testing of welded joints 5/8
5.6.5 Choice of non-destructive test methods for welds 5/11
5.6.6 Non-destructive testing techniques for welds 5/11
5.7 Acceptance criteria for weld defects revealed by visual examination and non-destructive testing 5/14
5.7.1 General 5/14
5.7.2 Assessment of defects 5/14
5.7.3 Repair of welds 5/15
5.8 Pressure tests 5/24
5.8.1 General 5/24
5.8.2 Basic requirements 5/24
5.8.3 Hydraulic testing 5/26
5.8.4 Pneumatic tests 5/26
5.8.5 “Standard” test pressure 5/27
5.8.6 Proof hydraulic test 5/29
5.8.7 Combined hydraulic/pneumatic tests 5/31
5.8.8 Leak testing 5/31
5.8.9 Vessel nameplate 5/32
5.8.10 Final inspection 5/32
5.9 Inspection requirements for cast components 5/33
5.9.1 Examination 5/33
5.9.2 Defects 5/33
5.9.3 Identification and marking 5/33

Annexes
Annex A: Requirements for design where loadings and components are not covered by Section 3 A/1
Annex B: Requirements for cylindrical, spherical and conical shells under combined loadings, including wind and earthquakes B/1
Annex C: Assessment of vessels subject to fatigue C/1
Annex D: Requirements for vessels designed to operate below 0°C D/1
Annex E: Recommendations for welded connections of pressure vessels E/1
Annex G: Recommendations for the design of local loads, thermal gradients, etc. G/1
Annex H: Recommendations for post-weld heat treatment of dissimilar ferritic steel joints H/1
Annex J: Recommendations for pressure relief protective devices J/1
Annex K: Requirements for design stresses for British Standard materials K/1
Annex L: Guidance on structural tolerances L/1
Annex M: Requirements for establishing the allowable external pressure for cylindrical sections outside the circularity limits specified in 3.6 M/1
Annex N: Requirements for vessel design and the provision of information concerning UK statutory requirements for the demonstration of the continued integrity of pressure vessels throughout their service life N/1
Annex Q: Recommendations for preparation and testing of production control test plates Q/1
Annex R: Guidance on additional information for flat ends and flat plates R/1
Annex S: Guidance on optional documentation for supply with vessel S/1
Annex T: Recommendations for arc welded tube to tubeplate joints T/1
Annex U: Guidance on the use of fracture mechanics analyses U/1
Annex V: Requirements for testing and inspection of serially produced pressure vessels V/1
Annex W: Worked examples W/1
Annex Z: Guidance on the application of PD 5500 to pressure vessels falling within the scope of the European Pressure Equipment Directive Z/1

Supplements
Aluminium supplement: Requirements for aluminium and aluminium alloys in the design and construction of unfired fusion welded pressure vessels Al/1
Copper supplement: Requirements for copper and copper alloys in the design and construction of unfired fusion welded or brazed pressure vessels Cu/1
Nickel supplement: Requirements for nickel and nickel alloys in the design and construction of unfired fusion welded pressure vessels Ni/1
Titanium supplement: Requirements for titanium and titanium alloys in the design and construction of unfired fusion welded pressure vessels Ti/1

Index 1
List of references V

List of figures
Figure 1.6-1 – Relationship of thickness definitions 1/14
Figure 3.5-1 – Dished ends 3/12
Figure 3.5-2 – Design curves for unpierced dished ends 3/14
Figure 3.5-3 – Conical shells: Vapour belt arrangement 3/17
Figure 3.5-4 – Values of coefficient β for cone/cylinder intersection without knuckle 3/20
Figure 3.5-5 – Geometry of cone/cylinder intersection: large end 3/22
Figure 3.5-6 – Geometry of cone/cylinder intersection: small end 3/24
Figure 3.5-7 – Offset cone 3/24
Figure 3.5-8 – Positions of openings or nozzles in dished ends 3/28
Figure 3.5-9 – Design curves for protruding nozzles in spherical vessels $(d/D < 0.5)$ and for protruding nozzles in cylindrical and conical vessels $(d/D < 1/3)$ 3/31
Figure 3.5-10 – Design curves for flush nozzles in spherical shells $(d/D < 0.5)$ and for flush nozzles in conical shells $(d/D < 1/3)$ 3/32
Figure 3.5-11 – Design curves for flush nozzles in cylindrical shells $(0 < d/D < 0.3)$ 3/33
Figure 3.5-12 – Design curves for flush nozzles in cylindrical shells $(0.2 < d/D \leq 1.0)$ 3/34
Figure 3.5-13 – Nozzle in a conical shell 3/42
Figure 3.5-14 – Notation applicable to spheres 3/42
Figure 3.5-15 – Notation applicable to spheres 3/43
Figure 3.5-15a – Notation applicable to oblique nozzles in spheres 3/43
Figure 3.5-16 – Notation applicable to spheres 3/44
Figure 3.5-17 – Notation applicable to spheres 3/44
Figure 3.5-18 – Notation applicable to cylinders 3/44
Figure 3.5-19 – Notation applicable to cylinders 3/45
Figure 3.5-20 – Notation applicable to cylinders 3/45
Figure 3.5-21 – Notation applicable to cylinders 3/46
Figure 3.5-22 – Protruding rim 3/46
Figure 3.5-23 – Flush rim 3/47
Figure 3.5-24 – Arrangement factor g 3/47
Figure 3.5-25 – Nozzle compensation 3/48
Figure 3.5-26 – Notation applicable to spheres and cylinders 3/49
Figure 3.5-27 – Notation applicable to spheres and cylinders 3/49
Figure 3.5-28 – Notation applicable to spheres and cylinders 3/50
Figure 3.5-29 – Modified flush nozzle compensation 3/51
Figure 3.5-30 – Modified protruding nozzle compensation 3/52
Figure 3.5-31 – Maximum branch to body thickness ratio 3/60
Figure 3.5-32 – Reinforcement of openings and branches 3/61
Figure 3.5-33 – Reinforcement of non-radial branches 3/73
Figure 3.5-34 – Typical welded flat ends and covers 3/81
Figure 3.5-35 – Typical non-welded flat ends and covers 3/82
Figure 3.5-36 – Factor C for welded flat ends for $e_{cyl}/e_{cylo} = 1$ to 3 3/83
Figure 3.5-37 – Factor C for welded flat ends for $e_{cyl}/e_{cylo} = 3$ to >10 3/84
Figure 3.5-38 – Typical stays: areas supported by stays 3/87
Figure 3.5-39 – Spherically domed and bolted end (narrow faced gasket) 3/91
Figure 3.6-1 – Effective lengths of cylinder 3/116
Figure 3.6-2 – Values of ε 3/118
Figure 3.6-3 – Values of n_{cyl} 3/119
Figure 3.6-4 – Values of Δ 3/120
Figure 3.6-5 – Stiffening ring with unsupported section 3/122
Figure 3.6-6 – Stiffening ring details 3/123
Figure 3.6-7 – Values of β 3/128
Figure 3.6-8 – Conical sections: typical stiffeners 3/129
Figure 3.8-1 – Loose keyed flange with mating components 3/149
Figure 3.8-2 – Forces and lever arms on loose keyed flange 3/150
Figure 3.8-3 – Typical lip arrangement for swing bolted flange 3/150
Figure 3.8-4 – Location of gasket load reaction 3/174
Figure 3.8-5 – Values of T, U, Y and Z 3/175
Figure 3.8-6 – Values of F (integral method factors) 3/176
Figure 3.8-7 – Values of V (integral method factors) 3/176
Figure 3.8-8 – Values of F_l (loose hub flange factors) 3/177
Figure 3.8-9 – Values of V_l (loose hub flange factors) 3/177
Figure 3.8-10 – Values of f (hub stress correction factors) 3/178
Figure 3.8-11 – Ungasketted, seal-welded-type flanges 3/178
Figure 3.8-12 – Contact face between loose and stub flanges in a lap joint where diameters A_2 and B_2 are defined by the same component 3/179
Figure 3.9-1 – Tubesheet layout 3/200
Figure 3.9-2 – Determination of area S 3/201
Figure 3.9-3 – Design curves: determination of C_0 3/203
Figure 3.9-4 – Design curves: determination of F_o 3/204
Figure 3.9-5 – Design curves: determination of F_o 3/205
Figure 3.9-6 – Design curves: determination of F_i 3/206
Figure 3.9-7 – Design curves: determination of F_i 3/207
Figure 3.9-8 – Typical clamped and simply supported configurations for floating head or U-tubesheets 3/208
Figure 3.9-9 – Flexural efficiency: triangular layout 3/209
Figure 3.9-10 – Flexural efficiency: square layout 3/210
Figure 3.9-11 – Tubesheet: determination of F_q 3/213

© The British Standards Institution 2012 • v
Figure 3.9-12 – Tubesheet: determination of H for $X_a > 4.0$ 3/214
Figure 3.9-13 – Tubesheet: determination of H for $X_a < 4.0$ 3/215
Figure 3.9-14 – Determination of the buckling length L_k 3/218
Figure 3.10-1 – Butt welds in plates of unequal thickness 3/224
Figure 3.10-2 – Butt welds with offset of median lines 3/225
Figure 3.11-1 – Some acceptable types of jacketed vessels 3/229
Figure 3.11-2 – Typical blocking ring and sealer ring construction 3/230
Figure 3.11-3 – Typical limpet coil 3/231
Figure 3.11-4 – Limpet coil arrangements 3/231
Figure 4.2-1 – Profile gauge details and application 4/11
Figure 4.3-1 – A thin limpet coil weld detail 4/14
Figure 5.6-1 – Illustration of welded joints for non-destructive testing 5/10
Figure 5.7-1 – Partial non-destructive testing (NDT) category 2 constructions 5/19
Figure A.1 – Stress categories and limits of stress intensity A/7
Figure A.2 – Curve for the evaluation of Δ A/12
Figure A.3 – Use of templates to check tolerances A/14
Figure B.1 – Stresses in a cylindrical shell under combined loading B/4
Figure B.2 – Stresses in a spherical shell under combined loading B/5
Figure B.3 – Stresses in a conical shell under combined loading B/6
Figure B.4 – Global loads B/8
Figure C.1 – Illustration of fluctuating stress C/2
Figure C.2 – Example of pressure vessel fatigue loading cycle and determination of stress ranges C/7
Figure C.3 – Fatigue design S–N curves for weld details applicable to ferritic steels up to and including 350 °C, austenitic stainless steels up to and including 430 °C, aluminium alloys up to and including 100 °C, nickel alloys up to and including 450 °C and titanium alloys up to and including 150 °C C/8
Figure C.4 – Fatigue design S–N curves for bolting applicable to ferritic steels up to and including 350 °C, austenitic stainless steels up to and including 430 °C, aluminium alloys up to and including 100 °C, nickel alloys up to and including 450 °C and titanium alloys up to and including 150 °C C/8
Figure C.5 – Interaction criteria for assessing coplanar embedded slag inclusions C/23
Figure C.6 – Stress measurement points for determining structural hot spot stress at a weld toe C/24
Figure C.7 – Deviations from design shape at seam welds C/28
Figure C.8 – Weld toe dressing C/30
Figure D.1 – Permissible design reference temperature/design reference thickness/required impact test temperature relationships for as-welded components D/3
Figure D.2 – Permissible design reference temperature/design reference thickness/required impact test temperature relationships for post-weld heat-treated components D/4
Figure D.3 – Examples of details for attaching non-critical components to pressure shell D/7
Figure D.4 – Location of Charpy V-notch specimens in weld metal (as-welded vessels) D/25
Figure D.5 – Location of Charpy V-notch specimens in weld metal (stress relieved vessels) D/25
Figure D.6 – Location of Charpy V-notch specimens in heat affected zone D/25
Figure D.7 – Example of detail for avoidance of severe thermal gradients D/27
Figure E.1 – Typical weld preparations for butt welds using the manual metal-arc process E/2
Figure E.2 – Typical weld preparations for circumferential welds where the second side is inaccessible for welding E/3
Figure E.3 – Typical weld preparations for butt welds using the submerged arc welding process

Figure E.4 – Typical weld preparations for butt welds using the manual inert gas arc welding for austenitic stainless and heat resisting steels only

Figure E.5 – Typical weld details for circumferential lap joints

Figure E.6 – Standard weld details

Figure E.7a) – Limitations on geometry of fillet weld applied to the edge or a part

Figure E.7b) – Transverse and longitudinal sections of branch connections

Figure E.8 – Weld details for set-in branches

Figure E.9 – Set-on branches

Figure E.10 – Set-on branches

Figure E.11 – Set-on branches

Figure E.12 – Set-on branches

Figure E.13 – Set-on branches

Figure E.14 – Set-on branches

Figure E.15 – Set-on branches

Figure E.16 – Set-in branches: fillet welded connections

Figure E.17 – Set-in branches: partial penetration butt welded connections

Figure E.18 – Set-in branches: full penetration connections

Figure E.19 – Set-in branches: full penetration connections

Figure E.20 – Set-in branches: full penetration connections with asymmetrical butt joints

Figure E.21 – Set-in branches: full penetration connections welded from one side only

Figure E.22 – Forged branch connections

Figure E.23 – Forged branch connections

Figure E.24 – Set-on branches with added compensation rings

Figure E.25 – Set-in branches with added compensation rings

Figure E.26 – Set-in branches with added compensation rings

Figure E.27 – Set-in branches with added compensation rings

Figure E.28 – Set-in branches with added compensation rings

Figure E.29 – Studded connections

Figure E.30 – Socket welded and screwed connections

Figure E.31 – Flanges

Figure E.32 – Flanges

Figure E.33 – Flanges

Figure E.34 – Jacketted vessels: typical vessel/blocking ring attachments

Figure E.35 – Jacketted vessels: typical blocking ring/jacket attachments

Figure E.36 – Jacketted vessels: typical sealer rings

Figure E.37 – Jacketted vessels: typical through connections

Figure E.38 – Flat ends and covers

Figure E.39 – Tubeplate to shell connections: accessible for welding on both sides of the shell

Figure E.40 – Tubeplate to shell connections: accessible for welding from outside of shell only

Figure E.41 – Tubeplate to shell connections: accessible for welding on both sides of shell

Figure E.42 – Tubeplate to shell connections

Figure E.43 – Tubeplate to shell connections

Figure E.44 – Tubeplate to shell connections

Figure G.2.2-1 – Restriction on vessel/attachment geometry

Figure G.2.2-2 – Vessel with central radial load

Figure G.2.2-3 – Vessel with radial load out of centre

Figure G.2.2-4 – Graph for finding equivalent length

Figure G.2.2-5 – Chart for finding

Figure G.2.2-6 – Cylindrical shells with radial load: circumferential moment per millimetre width
Figure G.2.2-7 – Cylindrical shells with radial load: longitudinal moment per millimetre width $G/11$
Figure G.2.2-8 – Cylindrical shells with radial load: circumferential membrane force per millimetre width $G/12$
Figure G.2.2-9 – Cylindrical shells with radial load: longitudinal membrane force per millimetre width $G/13$
Figure G.2.2-10 – Circumferential bending moment due to a radial line load variation round circumference $G/16$
Figure G.2.2-11 – Longitudinal moment from radial line load variation round circumference $G/17$
Figure G.2.2-12 – Circumferential membrane force from radial line load variation round circumference $G/18$
Figure G.2.2-13 – Longitudinal membrane force from radial line load variation round circumference $G/19$
Figure G.2.2-14 – Circumferential bending moment due to a radial line load variation along cylinder $G/20$
Figure G.2.2-15 – Longitudinal moment due to a radial line load variation along cylinder $G/21$
Figure G.2.2-16 – Circumferential membrane force due to a radial line load variation along cylinder $G/22$
Figure G.2.2-17 – Longitudinal membrane force due to a radial line load variation along cylinder $G/23$
Figure G.2.2-18 – Maximum radial deflection of a cylindrical shell subjected to a radial load W for r/t between 15 and 100 $G/25$
Figure G.2.2-19 – Maximum radial deflection of a cylindrical shell subjected to a radial load W for r/t between 100 and 300 $G/26$
Figure G.2.2-20 – Graphs for finding the square $2C_1 \times 2C_1$ equivalent to a rectangular loading area $2C_1 \times 2C_1$ $G/27$
Figure G.2.3-1 – Circumferential moment $G/30$
Figure G.2.3-2 – Longitudinal moment $G/30$
Figure G.2.3-3 – Sector stresses $G/35$
Figure G.2.3-4 – Notation for external loads at a nozzle or attachment on a cylindrical shell $G/36$
Figure G.2.4-1 – Chart for finding s and u $G/43$
Figure G.2.4-2 – Spherical shell subjected to a radial load $G/44$
Figure G.2.4-3 – Deflections of a spherical shell subjected to a radial load W $G/45$
Figure G.2.4-4 – Meridional moment M_x in a spherical shell subjected to a radial load W $G/46$
Figure G.2.4-5 – Circumferential moment M_ϕ in a spherical shell subjected to a radial load W $G/47$
Figure G.2.4-6 – Meridional force N_x in a spherical shell subjected to a radial load W $G/48$
Figure G.2.4-7 – Circumferential force N_ϕ in a spherical shell subjected to a radial load W $G/49$
Figure G.2.4-8 – Spherical shell subjected to an external moment $G/51$
Figure G.2.4-9 – Deflections of a spherical shell subjected to an external moment M $G/52$
Figure G.2.4-10 – Meridional moment M_x in a spherical shell subjected to an external moment M $G/53$
Figure G.2.4-11 – Circumferential moment M_ϕ in a spherical shell subjected to an external moment M $G/54$
Figure G.2.4-12 – Meridional force N_x in a spherical shell subjected to an external moment M $G/55$
Figure G.2.4-13 – Circumferential force N_ϕ in a spherical shell subjected to an external moment M $G/56$
Figure G.2.5-1 – Maximum stress in sphere for internal pressure (flush nozzles) $G/61$
Figure G.2.5-2 – Maximum stress in sphere for internal pressure (protruding nozzles) G/62
Figure G.2.5-3 – Maximum stress in sphere for thrust loading (flush nozzles) G/63
Figure G.2.5-4 – Maximum stress in sphere for thrust loading (protruding nozzles) G/63
Figure G.2.5-5 – Maximum stress in sphere for moment loading (flush nozzles) G/64
Figure G.2.5-6 – Maximum stress in sphere for moment loading (protruding nozzles) G/64
Figure G.2.5-7 – Maximum stress in sphere for shear loading (flush nozzles) G/65
Figure G.2.5-8 – Maximum stress in sphere for shear loading (protruding nozzles) G/65
Figure G.2.6-1 – Shakedown values for pressure loading (flush nozzle) G/66
Figure G.2.6-2 – Shakedown values for pressure loading (protruding nozzle) G/66
Figure G.2.6-3 – Shakedown values for thrust and moment loadings (flush nozzle) G/69
Figure G.2.6-4 – Shakedown values for thrust and moment loadings (protruding nozzle) G/70
Figure G.2.6-5 – Shakedown values for thrust and moment loadings (flush nozzle) G/71
Figure G.2.6-6 – Shakedown values for thrust and moment loadings (protruding nozzle) G/72
Figure G.2.6-7 – Shakedown values for thrust and moment loadings (flush nozzle) G/72
Figure G.2.6-8 – Shakedown values for thrust and moment loadings (protruding nozzle) G/73
Figure G.2.8-1 – Moment and force vectors G/75
Figure G.2.8-2 – Allowable axial nozzle load G/77
Figure G.2.8-3 – Allowable nozzle moment G/78
Figure G.2.8-4 – Calculation factor C_2 G/82
Figure G.2.8-5 – Calculation factor C_3 G/83
Figure G.2.8-6 – Calculation factor C_4 G/83
Figure G.3.1-1 – Typical brackets G/91
Figure G.3.1-2 – Typical reinforcing plates on cylindrical shells G/92
Figure G.3.2-1 – Typical ring support G/94
Figure G.3.2-2 – Typical steelwork under ring support G/95
Figure G.3.2-3 – Leg supports for vertical vessels G/95
Figure G.3.2-4 – Typical ring girder G/98
Figure G.3.3-1 – Typical supports for horizontal vessels G/100
Figure G.3.3-2 – Cylindrical shell acting as beam over supports G/102
Figure G.3.3-3 – Factor for bending moment at mid-span G/103
Figure G.3.3-4 – Factors for bending moment at supports G/104
Figure G.3.3-5 – Portion of shell ineffective against longitudinal bending G/105
Figure G.3.3-6 – Circumferential bending moment diagrams G/110
Figure G.3.3-7 – Saddle supports G/113
Figure G.3.3-8 – Typical ring stiffeners G/114
Figure G.3.3-9 – Graph of rigid end factor, F_a G/119
Figure G.3.3-10 – Graph of saddle width factor, F_b G/120
Figure G.3.3-11 – Graph of saddle interaction factor, F_i G/121
Figure G.3.3-12 – Graph of length change factor, F_l G/122
Figure G.3.3-13 – Graph of saddle wrap-round factor, F_o G/123
Figure G.4.3-1 – Nozzle geometry G/129
Figure G.4.3-2 – Transient fluid and metal temperatures G/129
Figure G.4.3-3 – Inner surface thermal stress factors K_1 and k_1 G/130
Figure G.4.3-4 – Outer surface thermal stress factors K_2 and k_2 G/131
Figure G.4.3-5 – Mean temperature factors K_6 and k_6 G/132
Table 3.5-2 – Values of $e/D \times 10^3$ for unpierced dished ends in terms of h_e/D and pf 3/15
Table 3.5-3 – Values of coefficient β or cone/cylinder intersection without knuckle 3/21
Table 3.5-4 – Thickness of nozzles 3/35
Table 3.5-5 – Design values of e_{rs}/e_{ps} for Figure 3.5-9, Figure 3.5-10 and Figure 3.5-11 when $e_{rs}/e_{ps} = 0$ 3/40
Table 3.5-7 – Allowable taper/taper thread sizes 3/55
Table 3.5-8 – Values of factor C for welded flat ends to Figure 3.5-34b) and Figure 3.5-36 3/85
Table 3.6-1 – Values for G and N 3/109
Table 3.6-2 – Definitions of cylinder lengths 3/110
Table 3.6-3 – E values for ferritic and austenitic steels (Young's modulus) 3/111
Table 3.6-4 – Values of $(\sigma /E) (d/e_w)^2$ for internal flat bar stiffeners 3/112
Table 3.6-5 – Values of $(\sigma /E) (d/e_w)^2$ for external flat bar stiffeners 3/113
Table 3.6-6 – Values of L_e/L_s 3/114
Table 3.6-7 – Values of Z' 3/115
Table 3.8-1 – Recommended design stress values for flange bolting materials 3/138
Table 3.8-2 – Bolt root areas 3/140
Table 3.8-3 – Recommended surface finish on gasket contact faces for body flanges and flanges fitted with covers 3/141
Table 3.8-4 – Gasket materials and contact facings: gasket factors (m) for operating conditions and minimum design seating stress (y) 3/156
Table 3.8-5 – Values of T, Z, Y and U (factors involving K) 3/160
Table 3.9-1 – Values of ΔC as a function of F_s and R for all tubesheets, and C_o for U-tubesheets only 3/199
Table 3.9-2 – Values of F_r for typical tube joints 3/219
Table 4.2-1 – Circumference 4/7
Table 4.2-2 – Tolerance on depth of dished ends 4/8
Table 4.2-3 – Maximum permitted peaking 4/10
Table 4.2-4 – Maximum permitted peaking when special analysis is used 4/10
Table 4.4-1 – Requirements for post-weld heat treatment of ferritic steel vessels 4/19
Table 5.1-1 – Inspection stages in the course of which participation by the Inspecting Authority is mandatory 5/1
Table 5.1-2 – Other principal stages of inspection 5/2
Table 5.2-1 – Tensile test temperature 5/3
Table 5.2-2 – Weld procedure tests for butt welds in 9% Ni steel 5/5
Table 5.6-1 – Thickness limits for examination of internal flaws 5/8
Table 5.7-1 – Radiographic acceptance levels 5/16
Table 5.7-2 – Ultrasonic acceptance levels applicable to ferritic steels and weld metals in the thickness range 7 mm to 100 mm inclusive 5/17
Table 5.7-3 – Visual and crack detection acceptance level 5/20
Table 5.7-4 – Radiographic acceptance levels (reassessment of category 2 construction) 5/23
Table 5.7-5 – Ultrasonic acceptance levels (reassessment of category 2 construction) 5/23
Table A.1 – Classification of stresses for some typical cases A/9
Table C.1 – Details of fatigue design curves C/16
Table C.2 – Classification of weld details C/10
Table C.3 – Values of M_1, M_2 and M_3 C/20
Table C.4 – Weld defect acceptance levels C/22
Table C.5 – Fatigue test factor F C/25
Table D.1 – Design reference temperature for heat exchanger tubes D/5
Table D.2 – Required impact energy D/8
Table D.3 – Minimum design reference temperature for omission of impact test D/9

© The British Standards Institution 2012 • xi
Table Al.2.3-1 – Design strength values: aluminium and aluminium alloys
Table Al.3.4-1 – Construction categories
Table Al.3.6-3 – E values for aluminium alloys (Young’s modulus)
Table Al.3.8-1 – Recommended design stress values for flange bolting materials
Table Al.5.7-1 – Acceptance levels
Table Al.5.8-1 – Principal stages of inspection
Table Cu.2.3-1 – Design strength values of copper and copper alloys
Table Cu.3.4-1 – Construction categories for copper and copper alloy construction
Table Cu.3.5-2 – Thickness of nozzles
Table Cu.3.6-3 – E values for copper and copper alloys (Young’s modulus)
Table Cu.4.2-1 – Hot forming temperatures
Table Cu.5.5-1 – Mechanical test requirements for butt weld procedure and welder approval
Table Cu.5.7-1 – Acceptance levels
Table Ni.2.3-1 – Design strength values for nickel and nickel alloy plate conforming to BS 3072
Table Ni.2.3-2 – Design strength values for nickel and nickel alloy seamless tube conforming to BS 3074
Table Ni.2.3-3 – Design strength values for nickel and nickel alloy seamless tube conforming to BS 3074
Table Ni.2.3-4 – Design strength values for nickel and nickel alloy seamless tube conforming to BS 3074
Table Ni.2.3-5 – Design strength values for nickel and nickel alloy forgings conforming to BS 3076
Table Ni.3.4-1 – Construction categories
Table Ni.3.6-3 – E values for nickel alloys (Young’s modulus)
Table Ni.4.2-1 – Maximum temperature for heating nickel and nickel alloys
Table Ni.4.4-1 – Annealing temperature for nickel and nickel alloys
Table Ti.2.3.1 – Design strength values: commercially pure titanium and titanium alloys of material specifications ASTM B265, B338, B348, B363, B381, B861, and B862
Table Ti.3.4-1 – Construction categories
Table Ti.3.6-3 – E values for titanium alloys (Young’s modulus)
Table Ti.4.2.2-1 – Minimum bend radii
Table Ti.4.4-1 – Heat treatment temperatures for commercially pure titanium and titanium alloys

Summary of pages
This document comprises a front cover, an inside front cover, pages i to xvi, pages 1/1 to 5/34, pages A/1 to Z/10, pages Al/1 to Ti/7, pages I to XIV, an inside back cover and a back cover.
Foreword

This Published Document is published by BSI Standards Limited, under licence from The British Standards Institution, and came into effect on 30 June 2012, to supersede PD 5500:2009+A3:2011. It provides a specification for the design, manufacture, inspection and testing of pressure vessels manufactured from carbon, ferritic alloy and austenitic steels, nickel and aluminium.

The form and content of the original issue of PD 5500 was derived, without technical amendment, from the 1997 edition of BS 5500, Specification for unfired fusion welded pressure vessels, and all amendments issued thereto, up to and including No. 6 (September 1999). At the time PD 5500 differed from BS 5500 only insofar as it did not retain the latter’s status as a national standard. This specification is thus, founded on the experience derived from the application of BS 5500 and the first edition of PD 5500, providing an integrated set of rules which have been shown to provide vessels of suitable integrity for a wide range of duties and risk environments.

BS 5500:1997 was withdrawn because its status as a national standard was incompatible with BSI’s obligations to CEN consequent to the development of the European Standard EN 13445, Unfired pressure vessels. That European Standard was first published in May 2002. A new edition of EN 13445 was published in July 2009.

The process of development of EN 13445 by CEN and its reference in the Official Journal of the European Communities creates, for equipment which conforms to that standard, a presumption of conformity with the essential safety requirements of the EU’s pressure equipment directive, 97/23/EC (see article 5 of that directive). This Published Document does not provide that presumption of conformity. However, this Published Document can be used, for vessels within the scope of directives, subject to:

– adherence of the directive’s conformity assessment requirements;
– the manufacturer satisfying himself that this PD covers all the technical requirements of the Directive relevant to the vessel in question.

This use may be to cover the full range of applicable vessel requirements or to cover an issue not, at the time, appropriately supported in EN 13345.

The normative form of wording is used in this Published Document, even though this does not have the status of a national standard, in order to ensure clarity in the definition of its requirements and recommendations.

Reference is made in the text to a number of standards which have been withdrawn. Such standards are identified in the list of references (see page V). Consideration is currently being given as to whether replacement standards are available or are being developed, for example, in the European programme, and to the implications for PD 5500 of such replacement standards. When a decision is made about any replacements standards, these will be identified by the issue of an amendment.

The British Standards Institution will be pleased to receive constructive proposals based on experience or research that may lead to improvements in this Published Document. PVE/1 intends to keep the content and technical status of this specification under review along with the need to publish appropriate supplements covering other types of pressure vessels. If there is sufficient demand from industry, this Published Document will be extended to cover other non-ferrous materials.
The requirements for materials not listed in Section 2. Materials, are given in supplements to the main text, which are to be read in conjunction with the main text so as to provide comprehensive requirements for pressure vessels produced in the relevant material. Annexes to the main text are provided which can be either normative (i.e. requirements) or informative (i.e. recommendations). These annexes can include additional requirements to the main text or informative guidance or recommendations, or can provide worked examples. Enquiry cases are published primarily to give guidance and clarification of possible ambiguities in the main text and will be incorporated into the main text or into an annex at an appropriate stage. Some Enquiry cases are published to provide new information and are identified as “preliminary rules”.

It should be noted that the effective date of amendments to this Published Document will be later than the publication date to allow users time to amend their own working procedures and documentation. See the introduction to the summary of pages table.

The following figures are reproduced by courtesy of the American Welding Research Council.

Figure G.2.5-1 was originally published as Figure 2 on page 21 of WRC Bulletin 90 September 1963.

Figure G.2.5-2 was originally published as Figure 3 on page 21 of WRC Bulletin 90 September 1963.

Figure G.2.5-3 was originally published as Figure 7 on page 24 of WRC Bulletin 90 September 1963.

Figure G.2.5-4 was originally published as Figure 8 on page 24 of WRC Bulletin 90 September 1963.

Figure G.2.5-5 was originally published as Figure 9 on page 25 of WRC Bulletin 90 September 1963.

Figure G.2.5-6 was originally published as Figure 10 on page 25 of WRC Bulletin 90 September 1963.

Figure G.2.5-7 was originally published as Figure 11 on page 26 of WRC Bulletin 90 September 1963.

Figure G.2.5-8 was originally published as Figure 12 on page 26 of WRC Bulletin 90 September 1963.

Figure G.2.5-1 to Figure G.2.6-8 are reproduced by courtesy of the International Journal of Solids and Structures, 1967.

This document may be referred to by the UK Health and Safety Executive (HSE) when giving guidance.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a Published Document cannot confer immunity from legal obligations.
Section 1. General

1.1 Scope

1.1.1 This Published Document specifies requirements for the design, construction, inspection, testing and verification of compliance of new unfired fusion welded pressure vessels. The materials of construction are specified in Section 2. The term “pressure vessel” as used in this specification includes branches up to the point of connection to the connecting piping by bolting, screwing or welding, and supports, brackets or other attachments directly welded to the pressure containing shell. The term “unfired” excludes vessels that are subject to direct generated heat or flame impingement from a fired process. It does not exclude vessels subject to electrical heating or heated process streams.

NOTE Whilst this specification is limited to the construction of new vessels, with the agreement of the relevant parties it can be used to guide the maintenance or any modification of existing vessels. Where these existing vessels were designed and constructed using an earlier edition of PD 5500, with the agreement of the relevant parties, that earlier edition can be used to guide the maintenance or any modification.

1.1.2 In addition to the definitive requirements this specification also requires the items detailed in 1.5 to be documented. For compliance with this specification, both the definitive requirements and the documented items have to be satisfied.

1.1.3 This specification applies only to pressure vessels manufactured under the survey of a competent engineering Inspecting Authority or Organization. The competent engineering Inspection Authority or Organization shall either be:

a) a notified body appointed by a member state of the European Union for the Pressure Equipment Directive 97/23/EC for the range of activities covered by this specification; or

NOTE Within the UK the United Kingdom Accreditation Service (UKAS) acts on behalf of the regulating authority in accrediting inspection bodies.

b) accredited to BS EN 45004, to Type A independence criteria, for inspection in the subject matter of this specification; or

c) accredited by an organization authorized by the local Regulatory Authority in countries outside the EU and in circumstances where the Pressure Equipment Directive 97/23/EC does not apply.

The intent of this requirement is regarded as satisfied where inspection is carried out by competent personnel of a separate engineering inspection department maintained by the purchaser of the vessel (in which case Type B independence criteria shall be met). An inspection department maintained by the manufacturer does not satisfy this requirement except:

a) that specific responsibilities may be delegated at the discretion of the Inspecting Authority or Organization; or

b) in the case of vessels for the manufacturer’s own use and not for resale.

This specification applies only to vessels made by manufacturers who can satisfy the Inspecting Authority or Organization that they are competent and suitably equipped to fulfil the appropriate requirements of this specification.

The requirements for testing and inspecting serially manufactured pressure vessels are given in Annex V. In all other respects the appropriate requirements in the specification apply.