Abstract: A standard for high-speed communication devices via electric power lines, so called broadband over power line (BPL) devices, is defined. Transmission frequencies below 100 MHz are used. All classes of BPL devices can use this standard, including BPL devices used for the first-mile/last-mile connection to broadband services as well as BPL devices used in buildings for local area networks (LANs), Smart Energy applications, transportation platforms (vehicle) applications, and other data distribution. The balanced and efficient use of the power line communications channel by all classes of BPL devices is the main focus of this standard, defining detailed mechanisms for coexistence and interoperability between different BPL devices, and ensuring that desired bandwidth and quality of service may be delivered. The necessary security questions are addressed to ensure the privacy of communications between users and to allow the use of BPL for security sensitive services.

Keywords: access devices, adaptive power management, broadband over power lines (BPLs), coexistence protocol (CXP), convolutional turbo code, cosine modulated filter banks, fast Fourier transform orthogonal frequency division multiplexing (FFT OFDM), in-home devices, intersystem protocol (ISP), low-density parity check code (LDPC), medium access control (MAC), power line communication (PLC), physical layer (PHY), privacy, quality of service (QoS), security, sine modulated filter banks, wavelet orthogonal frequency division multiplexing (OFDM)
IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation, or every ten years for stabilization. When a document is more than five years old and has not been reaffirmed, or more than ten years old and has not been stabilized, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon his or her independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered the official position of IEEE or any of its committees and shall not be considered to be, nor be relied upon as, a formal interpretation of the IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Recommendations to change the status of a stabilized standard should include a rationale as to why a revision or withdrawal is required. Comments and recommendations on standards, and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by The Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
Introduction

This introduction is not part of IEEE Std 1901-2010, IEEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications.

This standard was developed on requirements collected from a large diversity of entities (semiconductors, integrators, consumer electronics (CE) companies, utilities, telcos, IT companies, and transportation companies) that participated in the project. It provides a flexible architecture supporting integrated access, Smart Grid, building, in-home, and transportation platforms (vehicle) applications. It addresses a large diversity of topologies. It operates both on alternating (AC) and direct (DC) current lines.

The standard provides efficient medium access control (MAC) procedures that support quality of service (QoS), security, and privacy requirements.

The physical layer (PHY) procedures specify either a wavelet orthogonal frequency division multiplexing (wavelet OFDM) or a fast Fourier transform orthogonal frequency division multiplexing (FFT OFDM) modulation scheme, which are both capable of more than 500 Mbps.

The coexistence procedures allow the fair and efficient coexistence of the broadband over power line (BPL) systems. The intersystem protocol (ISP) enables various BPL systems to share power line communication resources in time (time domain multiplex), in frequency (frequency domain multiplex), or both.

This standard includes diagnostics and management capabilities as needed by the end users.

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the provisions of this standard does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and adoption by public authorities and private users, the IEEE does not waive any rights in copyright to this document.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE Standards Association web site at http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.
For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEE-SA web site at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. A patent holder or patent applicant has filed a statement of assurance that it will grant licenses under these rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses. Other Essential Patent Claims may exist for which a statement of assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.
Participants

This entity-based standard was created under the leadership of the following individuals:

Jean-Philippe Faure, Chair
James D. Allen, Vice Chair, PHY/MAC Technical Sub Group Chair
Michael Stelts, Coexistence Technical Sub Group Chair
Purva Rajkotia, GC PHY/MAC Technical Sub Group Chair
Roger C. vonDoenhoff, Transportation Sub Group Chair
Stephan Horvath, BPL/VDSL Sub Group Chair
Sherman Gavette, Technical Editor

At the time this standard was approved, the Broadband Over Power Lines PHY/MAC Working Group had the following entity membership:

ACN Advanced Communications Networks SA
Arkados Group, Inc.
Atheros Communications
Consumer Electronics Powerline Communication Alliance (CEPCA)
Consumers Energy
devol AG

Gigle Networks
HD-PLC Alliance
HomePlug Powerline Alliance, Inc.
Kawasaki Microelectronics, Inc.
MainNet Communications Ltd.
Marvell Switzerland Sarl

Mitsubishi Electric Corporation
Panasonic Corporation of America
Power Plus Communications AG
Siemens AG
Sony Corporation
SPIDCOM Technologies SA
The Boeing Company
Watteco sas

The Working Group gratefully acknowledges the contributions of the following entities and participants. Without their assistance and dedication, this standard would not have been completed.
<table>
<thead>
<tr>
<th>Organization</th>
<th>Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acbel Polytech</td>
<td>Allen Cruz</td>
</tr>
<tr>
<td></td>
<td>Rick Hung</td>
</tr>
<tr>
<td></td>
<td>Arthur Lui</td>
</tr>
<tr>
<td></td>
<td>Choli Teng</td>
</tr>
<tr>
<td></td>
<td>Tony Wan</td>
</tr>
<tr>
<td></td>
<td>Frank Yu</td>
</tr>
<tr>
<td>ACN Advanced Communications Networks, Inc.</td>
<td>Antoine Boss</td>
</tr>
<tr>
<td></td>
<td>David Harper</td>
</tr>
<tr>
<td></td>
<td>Stephan Horvath</td>
</tr>
<tr>
<td>Ambient Corporation</td>
<td>Jay Ganson</td>
</tr>
<tr>
<td></td>
<td>Ram Rao</td>
</tr>
<tr>
<td></td>
<td>Aron Viner</td>
</tr>
<tr>
<td>Analog Devices, Inc.</td>
<td>Dale Stolitzka</td>
</tr>
<tr>
<td>Analogies, SA</td>
<td>John Kikidis</td>
</tr>
<tr>
<td>AnSem</td>
<td>Paul Picazo</td>
</tr>
<tr>
<td>AOPEN America</td>
<td>Laura Diaz</td>
</tr>
<tr>
<td></td>
<td>Frank Huang</td>
</tr>
<tr>
<td></td>
<td>Wei Jim Lai</td>
</tr>
<tr>
<td></td>
<td>Luke G. Lin</td>
</tr>
<tr>
<td></td>
<td>Chris Rawlins</td>
</tr>
<tr>
<td>Arkados, Inc.</td>
<td>James D. Allen</td>
</tr>
<tr>
<td></td>
<td>Dave Lawrence</td>
</tr>
<tr>
<td></td>
<td>Mike Macaluso</td>
</tr>
<tr>
<td></td>
<td>Sandeep Mohankumar</td>
</tr>
<tr>
<td></td>
<td>Jim Reeber</td>
</tr>
<tr>
<td></td>
<td>George Rigopoulos</td>
</tr>
<tr>
<td></td>
<td>Bo Zhang</td>
</tr>
<tr>
<td>Ascom</td>
<td>Manu Sharma</td>
</tr>
<tr>
<td>Asoka USA</td>
<td>Songly Mu</td>
</tr>
<tr>
<td>Atheros Communications</td>
<td>Kaywan Afkhamie</td>
</tr>
<tr>
<td></td>
<td>Ron Glibbery</td>
</tr>
<tr>
<td></td>
<td>Chris Henningsen</td>
</tr>
<tr>
<td></td>
<td>Srinivas Katar</td>
</tr>
<tr>
<td></td>
<td>Manjunath Krishnam</td>
</tr>
<tr>
<td></td>
<td>Andy Melder</td>
</tr>
<tr>
<td></td>
<td>Purva Rajkotia</td>
</tr>
<tr>
<td></td>
<td>Sid Schrum</td>
</tr>
<tr>
<td></td>
<td>Faisal Shad</td>
</tr>
<tr>
<td></td>
<td>Larry Yonge</td>
</tr>
<tr>
<td></td>
<td>Jim Zyren</td>
</tr>
<tr>
<td>Broadcom Corporation</td>
<td>Stephen Palm</td>
</tr>
<tr>
<td>Buffalo Inc</td>
<td>Akihito Hibi</td>
</tr>
<tr>
<td>Center Point Energy</td>
<td>Kato Masato</td>
</tr>
<tr>
<td></td>
<td>Gregory Angst</td>
</tr>
<tr>
<td></td>
<td>P. J. Donner</td>
</tr>
<tr>
<td>Consumer Electronics Powerline Communication Alliance (CEPCA)</td>
<td>Lee Gould</td>
</tr>
<tr>
<td></td>
<td>Toshihiro Inokuchi</td>
</tr>
<tr>
<td></td>
<td>Akio Kurobe</td>
</tr>
<tr>
<td></td>
<td>Michael Stelts</td>
</tr>
<tr>
<td>Cisco Systems</td>
<td>Ivar Beljaars</td>
</tr>
<tr>
<td></td>
<td>Jon Cave</td>
</tr>
<tr>
<td></td>
<td>Allen J. Huotari</td>
</tr>
<tr>
<td>Communications Society</td>
<td>Alex Gelman</td>
</tr>
<tr>
<td>Component Distribution for PLC S.L.</td>
<td>Sylwia Hadaj</td>
</tr>
<tr>
<td></td>
<td>Horst Hadi Mahmoudi</td>
</tr>
<tr>
<td></td>
<td>H. Prasad</td>
</tr>
<tr>
<td>Comtrend</td>
<td>Sophie Chen</td>
</tr>
<tr>
<td></td>
<td>Frank Chuang</td>
</tr>
<tr>
<td></td>
<td>Tomas Hubeny</td>
</tr>
<tr>
<td></td>
<td>Oscar Matteo</td>
</tr>
</tbody>
</table>
The following members of the entity balloting committee voted on this guide. Balloters may have voted for approval, disapproval, or abstention:

ACN Advanced Communications Networks SA
Alcatel-Lucent
American Electric Power
Arkados Group, Inc.
Asahi KASEI E-Materials Corporation
AT&T
Atheros Communications
Broadcom Corporation
Consumer Electronics Powerline Communication Alliance (CEPCA)
Cisco Systems
Consumers Energy
Current Technologies
devolo AG
DS2
Entropic Communications
France Telecom
Freebox
GigaFast E Ltd
Gigle Networks
HD-PLC Alliance
Hirotech, Inc.
HomePlug Powerline Alliance, Inc.
Huawei Technologies Co.
IBM
Ikanos Communications
Intel Corporation
International Broadband Electric Communications, Inc.
Kawasaki Microelectronics, Inc.
Kozo Keikaku Engineering, Inc.
LEA
Liberty University
MainNet Communications Ltd.
Marvell Switzerland Sarl
Mitsubishi Electric Corporation
Motorola, Inc.
Omnilala, Inc.
Panasonic Corporation of America
Power Plus Communications AG
Ricoh Company, Ltd.
SFR
SPIDCOM Technologies
ST Microelectronics Inc.
Samsung Electronics
Siemens AG
Sony Corporation
Sumitomo Electric Industries, Ltd.
Synopsys
The Boeing Company
Tokyo University of Science
Toshiba Corporation
Universal Powerline Association
Watteco sas
WireFi Networks Inc.

When the IEEE-SA Standards Board approved this on 30 September 2010, it had the following membership:

Robert M. Grow, Chair
Richard H. Hulett, Vice Chair
Steve M. Mills, Past President
Judith Gorman, Secretary

Karen Bartleson
Victor Berman
Ted Burse
Clint Chaplin
Andy Drozd
Alexander Gelman
Jim Hughes
Young Kyun Kim
Joseph L. Koepfinger*
John Kulick
David J. Law
Hung Ling
Oleg Logvinov
Ted Olsen
Ronald C. Petersen
Thomas Prevost
Jon Walter Rosdahl
Sam Sciacca
Mike Seavey
Curtis Siller
Don Wright

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish Aggarwal, NRC Representative
Richard DeBlasio, DOE Representative
Michael Janezic, NIST Representative

Noelle D. Humenick
Project Manager, IEEE-SA Professional Services

Brenda Mancuso
Secretary, IEEE-SA Professional Services

Don Messina
IEEE Standards Program Manager, Document Development

Bill Ash
Strategic Program Manager, Standards

Matthew J. Ceglia
IEEE Standards Program Manager, Technical Program Development
<table>
<thead>
<tr>
<th>Section Number</th>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>MLME</td>
<td>944</td>
</tr>
<tr>
<td>10.1</td>
<td>Synchronization</td>
<td>944</td>
</tr>
<tr>
<td>10.2</td>
<td>Power management</td>
<td>951</td>
</tr>
<tr>
<td>10.3</td>
<td>Forming and joining an FFT in-home network</td>
<td>955</td>
</tr>
<tr>
<td>10.4</td>
<td>Forming and joining an FFT access network</td>
<td>972</td>
</tr>
<tr>
<td>10.5</td>
<td>Forming and joining a wavelet in-home network or access network</td>
<td>995</td>
</tr>
<tr>
<td>10.6</td>
<td>FFT in-home traffic streams</td>
<td>1007</td>
</tr>
<tr>
<td>10.7</td>
<td>FFT access system traffic streams</td>
<td>1025</td>
</tr>
<tr>
<td>10.8</td>
<td>DFS procedures</td>
<td>1041</td>
</tr>
<tr>
<td>10.9</td>
<td>Wavelet in-home and access traffic streams</td>
<td>1045</td>
</tr>
<tr>
<td>10.10</td>
<td>Traffic classifiers</td>
<td>1052</td>
</tr>
<tr>
<td>11</td>
<td>Multiple networks using the FFT PHY</td>
<td>1057</td>
</tr>
<tr>
<td>11.1</td>
<td>Multiple in-home FFT networks</td>
<td>1057</td>
</tr>
<tr>
<td>11.2</td>
<td>Multiple access system FFT networks</td>
<td>1080</td>
</tr>
<tr>
<td>12</td>
<td>PHY service specification</td>
<td>1084</td>
</tr>
<tr>
<td>12.1</td>
<td>Scope</td>
<td>1084</td>
</tr>
<tr>
<td>12.2</td>
<td>PHY functions</td>
<td>1084</td>
</tr>
<tr>
<td>12.3</td>
<td>Detailed PHY service specifications</td>
<td>1084</td>
</tr>
<tr>
<td>13</td>
<td>FFT physical layer</td>
<td>1100</td>
</tr>
<tr>
<td>13.1</td>
<td>Physical layer convergence protocol (PLCP)</td>
<td>1100</td>
</tr>
<tr>
<td>13.2</td>
<td>FFT system</td>
<td>1102</td>
</tr>
<tr>
<td>13.3</td>
<td>Cyclic redundancy check calculation</td>
<td>1105</td>
</tr>
<tr>
<td>13.4</td>
<td>PPDU structure and generation</td>
<td>1106</td>
</tr>
<tr>
<td>13.5</td>
<td>TIA-1113 frame control FEC</td>
<td>1109</td>
</tr>
<tr>
<td>13.6</td>
<td>Frame control forward error correction</td>
<td>1114</td>
</tr>
<tr>
<td>13.7</td>
<td>Payload forward error correction (FEC) processing</td>
<td>1115</td>
</tr>
<tr>
<td>13.8</td>
<td>Mapping</td>
<td>1125</td>
</tr>
<tr>
<td>13.9</td>
<td>Symbol generation</td>
<td>1139</td>
</tr>
<tr>
<td>13.10</td>
<td>Transmitter electrical specification</td>
<td>1150</td>
</tr>
<tr>
<td>13.11</td>
<td>Receiver electrical specification</td>
<td>1157</td>
</tr>
<tr>
<td>13.12</td>
<td>PMD sublayer service</td>
<td>1159</td>
</tr>
<tr>
<td>14</td>
<td>Wavelet physical layer</td>
<td>1165</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>1165</td>
</tr>
<tr>
<td>14.2</td>
<td>PLCP sublayer</td>
<td>1167</td>
</tr>
<tr>
<td>14.3</td>
<td>PHY encoder</td>
<td>1171</td>
</tr>
<tr>
<td>14.4</td>
<td>PMD</td>
<td>1229</td>
</tr>
<tr>
<td>14.5</td>
<td>PLME</td>
<td>1237</td>
</tr>
<tr>
<td>14.6</td>
<td>PMD sublayer service</td>
<td>1239</td>
</tr>
<tr>
<td>15</td>
<td>Coexistence</td>
<td>1245</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>1245</td>
</tr>
<tr>
<td>15.2</td>
<td>Overview</td>
<td>1245</td>
</tr>
<tr>
<td>15.3</td>
<td>Coexistence signaling</td>
<td>1246</td>
</tr>
<tr>
<td>15.4</td>
<td>Coexistence resource allocation</td>
<td>1246</td>
</tr>
<tr>
<td>15.5</td>
<td>Start-up and resynchronization procedures</td>
<td>1246</td>
</tr>
<tr>
<td>15.6</td>
<td>Coexistence management messages</td>
<td>1247</td>
</tr>
<tr>
<td>16</td>
<td>Inter-system protocol (ISP)</td>
<td>1249</td>
</tr>
<tr>
<td>16.1</td>
<td>ISP overview</td>
<td>1249</td>
</tr>
<tr>
<td>16.2</td>
<td>Coexistence signal definition</td>
<td>1250</td>
</tr>
<tr>
<td>16.3</td>
<td>Coexistence signaling scheme</td>
<td>1256</td>
</tr>
<tr>
<td>16.4</td>
<td>Coexistence resources</td>
<td>1261</td>
</tr>
<tr>
<td>16.5</td>
<td>ISP resource allocation</td>
<td>1264</td>
</tr>
<tr>
<td>16.6</td>
<td>Start-up and resynchronization procedures</td>
<td>1265</td>
</tr>
<tr>
<td>16.7</td>
<td>ISP EMI control procedures</td>
<td>1270</td>
</tr>
</tbody>
</table>
Copyright © 2010 IEEE. All rights reserved.
Copyright © 2010 IEEE. All rights reserved.
Figure 7-24—Key Information bit layout ... 464
Figure 7-25—KDE format ... 467
Figure 7-26—GTK KDE format .. 468
Figure 7-27—MAC address KDE format .. 468
Figure 7-28—PMKID KDE format ... 468
Figure 7-29—SMK KDE format ... 468
Figure 7-30—Nonce KDE format ... 468
Figure 7-31—Lifetime KDE format ... 469
Figure 7-32—Error KDE format .. 469
Figure 7-33—Key Index KDE format .. 469
Figure 7-34—Sample 4-Way Handshake ... 478
Figure 7-35—Sample Group Key Handshake .. 483
Figure 7-36—RSNA Supplicant key management state machine 484
Figure 7-37—PeerKey Handshake Supplicant key management state machine . 489
Figure 7-38—Authenticator state machines, part 1 .. 492
Figure 7-39—Authenticator state machines, part 2 .. 493
Figure 7-40—Authenticator state machines, part 3 .. 494
Figure 7-41—Authenticator state machines, part 4 .. 495
Figure 7-42—Encrypted payload frame when PID is between 0x00 and 0x03 or between 0x05 and 0x08 516
Figure 7-43—Encrypted payload frame when PID = 0x04 or 0x09 517
Figure 7-44—Authorization using DAK (existing BSS) 522
Figure 7-45—Authorization using UKE (Two unassociated STAs, SC-Add and SC-Join) 523
Figure 7-46—Authorization using UKE (Two unassociated STAs, Both SC-Join) 524
Figure 7-47—Provision NEK for a new STA ... 527
Figure 7-48—Provision NEK for all or part of the BSS 528
Figure 7-49—Authentication message sequence of a new STA 532
Figure 7-50—NEK Key Update ... 535
Figure 8-1—Medium States when an MPDU is transmitted or detected during contention 540
Figure 8-2—Medium States when a station gets preempted in the priority resolution period and detects no MPDU transmission during contention 540
Figure 8-3—Medium States when MPDU frame control errors or collisions lead to a busy state and no delimiter is detected for an EIFS period ... 541
Figure 8-4—Basic access procedure ... 543
Figure 8-5—Interframe spaces for the beacon and CSMA regions 544
Figure 8-6—Contention-free interframe space (CFIFS) 545
Figure 8-7—Interframe spacing for MPDU bursting 545
Figure 8-8—Extended Interframe Space (EIFS) ... 546
Figure 8-9—RCG measurement ... 546
Figure 8-10—Interframe space ... 547
Figure 8-11—Extended Interframe Space (EIFS) ... 548
Figure 8-12—Allocation Interframe Space ... 548
Figure 8-13—RCG measurement ... 549
Figure 8-14—Basic access mechanism of CSMA/CA 551
Figure 8-15—Acknowledgment procedure .. 552
Figure 8-16—Interframe spaces .. 553
Figure 8-17—NAV calculation ... 554
Figure 8-18—RTS/CTS and NAV setting .. 555
Figure 8-19—Medium State of priority control .. 559
Figure 8-20—Priority control procedure ... 560
Figure 8-21—MAC framing process for data streams 564
period is four times the AC line cycle period ... 667
Figure 8-73—Relationship between beacon period and TDMA scheduling period when TDMA scheduling period is three times the AC line cycle period .. 667
Figure 8-74—Example network topology ... 669
Figure 8-75—TDMA allocation choice for transmission from station 1 to station 2 670
Figure 8-76—Tracking of TDMA period start time .. 672
Figure 8-77—Targeted application example consisting of one BM, three TDRs, and 72 STAs 674
Figure 8-78—Schedule information is in the beacon .. 674
Figure 8-79—Round trip time (RTT) ... 675
Figure 8-80—Multi (here two)-hopping case ... 676
Figure 8-81—C-VLAN and S-VLAN support ... 682
Figure 9-1—GET and SET operations ... 684
Figure 10-1—Beacon cycle .. 950
Figure 10-2—Synchronous system timing .. 951
Figure 10-3—Sleep and Awake transitions ... 955
Figure 10-4—Getting full BSS information .. 957
Figure 10-5—Power-On Network Discovery Procedure 959
Figure 10-6—Unassociated STA Behavior .. 960
Figure 10-7—Unassociated BM Behavior .. 961
Figure 10-8—Behavior as a STA in a BSS ... 961
Figure 10-9—Behavior as a BM in a BSS ... 962
Figure 10-10—STA association (DSN security) .. 963
Figure 10-11—Disassociation—STA leaves BSS ... 966
Figure 10-12—BSS formation by two unassociated STAs with matching NIDs 968
Figure 10-13—BSS formation using UKE by one STA in SimpleConnectionAdd and one STA in SimpleConnectionJoin (DSN security) ... 969
Figure 10-14—BSS formation using UKE by two STAs in SC-Join 970
Figure 10-15—New STA joins existing BSS using UKE (DNS security) 972
Figure 10-16—Power-on network selection for a STA .. 974
Figure 10-17—STA joining the core cell of the access network 976
Figure 10-18—HE disassociating STA1 from the core cell network 977
Figure 10-19—Station leaving the access core cell ... 977
Figure 10-20—CPE associating with an NTU preconfigured to form a subcell with a different NID than that of the core cell ... 979
Figure 10-21—CPE associating with an NTU preconfigured to form a subcell with a same NID as that of the core cell ... 980
Figure 10-22—A CPE leaving an access subcell .. 981
Figure 10-23—Distribution of NMK for a STA added into the access core network 982
Figure 10-24—Authentication of a new station in a core cell 983
Figure 10-25—Provision of NEK to STA in an access network 984
Figure 10-26—DAK-based delivery of NMK to CPE ... 986
Figure 10-27—NTU-initiated NMK distribution ... 988
Figure 10-28—Authentication of CPE in a subcell .. 989
Figure 10-29—A CPE joining an access network .. 991
Figure 10-30—Authorizing the point-to-point communication 994
Figure 10-31—Authentication of point-to-point communication 995
Figure 10-32—Probe response ... 997
Figure 10-33—Station authentication .. 1000
Figure 10-34—Station authentication (failure case) .. 1001
Figure 10-35—Station reauthentication ... 1003
Figure 10-36—Station deauthentication (by non-BM STA) 1004
Figure M-11—1901 FFT channel access in 1901 FFT hybrid mode .. 1421
Figure M-10—Compatible 1901 FFT Hybrid RTS delimiter during CFP allocation when there is no
Figure M-9—Compatible 1901 FFT Hybrid RTS delimiter when the corresponding SOF follows the CTS
Figure M-8—Compatible 1901 FFT Hybrid RTS delimiter when PRP follows the CTS delimiter 1418
Figure M-7—Compatible burst MPDU using TIA-1113 SOF with no response expected 1417
Figure M-6—Compatible Regular MPDU during CFP allocation using TIA-1113 SOF with no response
Figure M-5—Compatible Regular MPDU during shared CSMA allocation using TIA-1113 SOF with no
Figure M-4—Compatible Regular MPDU during shared CSMA using TIA-1113 SOF with response expected
Figure M-3—BSS manager TIA-1113 coexistence mode changes .. 1414
Figure M-2—1901 FFT hybrid mode processing for detecting TIA-1113 transmission 1412
Figure M-1—1901 FFT-only mode processing for detecting TIA-1113 transmission 1411
Figure F-9—Differential and common mode currents on a twin wire cable .. 1340
Figure F-8—Link configuration for the determination of the paths generated in correspondence of a bridged tap located in A and followed by a discontinuity in C ... 1338
Figure F-7—Layout of a typical residential or commercial premises power line network 1337
Figure F-6—Diagram of a typical service panel with four circuit breakers ... 1336
Figure F-5—Cross section of typical three-wire and four-wire conductor cables found in residential PL networks .. 1335
Figure F-4—Two methods for delay measurement .. 1332
Figure Q-27—Two systems share S-Slots ... 1495
Figure Q-26—One system uses all S-Slots .. 1495
Figure Q-25—Access system signals partial bandwidth .. 1494
Figure Q-24—Access system signals full bandwidth ... 1494
Figure Q-22—In-home systems are using all S-Slots .. 1493
Figure Q-21—Access system signals partial bandwidth .. 1493
Figure Q-20—Access system signals full bandwidth ... 1492
Figure Q-19—Access system signals FDM mode .. 1492
Figure Q-18—In-home systems are using all S-Slots in both channels ... 1492
Figure Q-17—Third in-home system begins to use S-Slot 2 in addition to S-Slot 3 1491
Figure Q-16—Master node monitors H field to detect S-Slot usage by other systems 1491
Figure Q-15—Third in-home system requests an S-Slot by signaling in both JH and JL 1490
Figure Q-14—Third in-home system requests an S-Slot by signaling in JH ... 1489
Figure Q-13—Master node monitors H field to detect S-Slot usage by other systems 1489
Figure Q-12—The third in-home system requests an S-Slot by signaling in both JH and JL 1489
Figure Q-11—In-home system abandons S-Slot acquisition procedure .. 1489
Figure Q-10—In-home system begins to use the S-Slot .. 1487
Figure Q-9—In-home system requests an additional high-priority S-Slot .. 1487
Figure Q-8—Condition before entry: Two in-home systems use two S-Slots each 1488
Figure Q-7—In-home system begins to use an additional S-Slot .. 1488
Figure Q-6—Master node monitors H field to detect S-Slot usage by other systems 1488
Figure Q-5—In-home system begins to use the S-Slot .. 1487
Figure Q-4—In-home system begins to use the S-Slot .. 1487
Figure Q-3—In-home system begins to use an additional high-priority S-Slot .. 1487
Figure Q-2—In-home system begins to use the S-Slot .. 1487
Figure Q-1—State of CDCF when no systems transmit in Field H .. 1487
Figure P-17—Definition of boundary frequency for CXP FDM (using CDCF Fields A and H) 1457
Figure P-16—CDCF window for FDM mode .. 1457
Figure P-15—Definition of CDCF Field J .. 1456
Figure P-14—Definition of CDCF Field H ... 1455
Figure P-13—Definition of CDCF Fields Ba, Bb, and Bc from Figure P-11 ... 1454
Figure P-12—Definition of CDCF Field A ... 1452
Figure P-11—Logical format of the CDCF window ... 1451
Figure P-10—TDM slots for TDM mode (upper) and in-home frequency channel for FDM/in-home only modes (lower) .. 1451
Figure P-9—Basic TDMU structure .. 1450
Figure P-8—Number of TDM Units and D-Slots ... 1450
Figure P-7—TDM Unit format .. 1449
Figure P-6—TDM Unit .. 1448
Figure P-5—CDCF format .. 1446
Figure P-4—TDM mode ... 1445
Figure P-3—FDM mode .. 1444
Figure P-2—No access mode ... 1443
Figure P-1—Relationship of ISP signals and CDCF signals .. 1442
Figure O-1—Example for beacon scanning using iteration method ... 1437
Figure O-2—Example topology ... 1438
Figure N-2—Example: noncoordinating in-home networks give zero share of bandwidth to access network .. 1432
Figure N-1—Topology where access network detects noncoordinating in-home networks 1431
Figure N-2—Example: noncoordinating in-home networks give zero share of bandwidth to access network .. 1432
Figure M-12—CSMA LENGTH ... 1427
Figure M-11—CSMA LENGTH ... 1427
Figure M-10—CSMA LENGTH ... 1427
Figure M-9—CSMA LENGTH .. 1427
Figure M-8—CSMA LENGTH .. 1427
Figure M-7—CSMA LENGTH .. 1427
Figure M-6—CSMA LENGTH .. 1427
Figure M-5—CSMA LENGTH .. 1427
Figure M-4—CSMA LENGTH .. 1427
Figure M-3—CSMA LENGTH .. 1427
Figure M-2—CSMA LENGTH .. 1427
Figure M-1—CSMA LENGTH .. 1427

Copyright © 2010 IEEE. All rights reserved.
Figure U-1—A recommended fixed voltage point detection circuit .. 1532
Figure U-2—Input/output signals .. 1532
Figure U-3—3 Zero-cross point calculation .. 1533
Figure W-1—Architecture for transmission and reception of CDCF signals .. 1536
Figure W-2—CDCF signal receiver structure ... 1537
Figure W-3—CDCF signal PSD including notches ... 1537
Figure W-4—Detection probability of CDCF signal .. 1538
Tables
Table 6-48—Reverse SOF Frame Length Interpretation ... 119
Table 6-47—Contention-Free Session Interpretation .. 118
Table 6-46—Reverse SOF Fields .. 117
Table 6-45—MAX_PB_SYM Interpretation .. 117
Table 6-43—Sound Complete Flag Interpretation ... 115
Table 6-42—Sound ACK Flag Interpretation ... 115
Table 6-41—Sound MPDU PHY Block Size Interpretation .. 114
Table 6-39—RTS Flag Interpretation ... 110
Table 6-36—Request Reverse Transmission Length Interpretation ... 108
Table 6-34—SACKI Field for Mixed Errors—Compressed (SACKT = 0b01) ... 107
Table 6-33—SACKI Field for Mixed Errors—Uniform (SACKT = 0b11) .. 107
Table 6-31—Request Reverse Transmission Flag Interpretation ... 105
Table 6-29—SACK Data Variant Field .. 104
Table 6-28—Selective Acknowledgment Fields ... 104
Table 6-27—Data and Management MAC Frame Stream Response Interpretation 103
Table 6-26—Data and Management MAC Frame Stream Command Interpretation 103
Table 6-25—MAC SAP Type .. 102
Table 6-24—Request SACK Retransmission Interpretation ... 102
Table 6-23—Multicast Flag Interpretation ... 101
Table 6-22—Maximum Reverse Transmission Frame Length Interpretation 101
Table 6-21—Bidirectional Burst Flag Interpretation ... 101
Table 6-20—MPDU Count Interpretation ... 100
Table 6-19—Frame Length Interpretation ... 100
Table 6-18—Tone Map Index Interpretation .. 99
Table 6-17—Number of Symbols Interpretation .. 98
Table 6-16—PHY Block Size Interpretation .. 98
Table 6-15—Encryption Key Select Interpretation .. 96
Table 6-14—1901-aware-TIA-1113 Detect Flag Interpretation ... 96
Table 6-13—TIA-1113 Detect Flag Interpretation ... 96
Table 6-12—Beacon Detect Flag Interpretation ... 96
Table 6-11—Contention-Free Session Interpretation ... 95
Table 6-10—1901 Start-of-Frame Fields .. 94
Table 6-9—Beacon Fields .. 93
Table 6-8—Access Field Interpretation ... 92
Table 6-7—Delimiter Type Field Interpretation .. 92
Table 6-6—MPDU Frame Control Fields ... 91
Table 6-5—Connection ID Field Interpretation .. 88
Table 6-4—Interpretation of 2LFLAGS Field .. 87
Table 6-3—MAC Frame Header Field .. 87
Table 6-2—General FFT MAC Frame Format .. 86
Table 6-18—Example of Tabulation of Fields That Do Not Obey Octet Boundaries 85
Table 6-17—Number of Symbols Interpretation .. 85
Table 6-16—PHY Block Size Interpretation .. 84
Table 6-15—Encryption Key Select Interpretation .. 83
Table 6-14—1901-aware-TIA-1113 Detect Flag Interpretation ... 83
Table 6-13—TIA-1113 Detect Flag Interpretation ... 83
Table 6-12—Beacon Detect Flag Interpretation ... 83
Table 6-11—Contention-Free Session Interpretation ... 83
Table 6-10—1901 Start-of-Frame Fields .. 83
Table 6-9—Beacon Fields .. 83
Table 6-8—Access Field Interpretation ... 83
Table 6-7—Delimiter Type Field Interpretation .. 83
Table 6-6—MPDU Frame Control Fields ... 83
Table 6-5—Connection ID Field Interpretation .. 83
Table 6-4—Interpretation of 2LFLAGS Field .. 83
Table 6-3—MAC Frame Header Field .. 83
Table 6-2—General FFT MAC Frame Format .. 83
Table 4-2—Differences Between In-home BSS and Access Cell ... 48
Table 4-1—PHYNETs in Figure 4-4 .. 39
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-49</td>
<td>PB Header Format</td>
<td>121</td>
</tr>
<tr>
<td>6-50</td>
<td>MAC Frame Boundary Offset Interpretation</td>
<td>122</td>
</tr>
<tr>
<td>6-51</td>
<td>Management Message Queue Flag Interpretation</td>
<td>122</td>
</tr>
<tr>
<td>6-52</td>
<td>MAC Frame Boundary Flag Interpretation</td>
<td>122</td>
</tr>
<tr>
<td>6-53</td>
<td>Oldest Pending Segment Flag Interpretation</td>
<td>123</td>
</tr>
<tr>
<td>6-54</td>
<td>2-Level MAC Frame Format</td>
<td>123</td>
</tr>
<tr>
<td>6-55</td>
<td>MAC Frame Header Field</td>
<td>124</td>
</tr>
<tr>
<td>6-56</td>
<td>MAC Frame Type Field Interpretation</td>
<td>124</td>
</tr>
<tr>
<td>6-57</td>
<td>Management Message Format</td>
<td>127</td>
</tr>
<tr>
<td>6-58</td>
<td>Interpretation of Two LSBs of MMTYPE</td>
<td>128</td>
</tr>
<tr>
<td>6-59</td>
<td>Interpretation of Three MSBs of MMTYPE</td>
<td>128</td>
</tr>
<tr>
<td>6-60</td>
<td>Prefix Conventions when Naming Management Messages</td>
<td>129</td>
</tr>
<tr>
<td>6-61</td>
<td>Management Message Type</td>
<td>131</td>
</tr>
<tr>
<td>6-62</td>
<td>Sound Payload Fields</td>
<td>136</td>
</tr>
<tr>
<td>6-63</td>
<td>Beacon Payload Fields</td>
<td>137</td>
</tr>
<tr>
<td>6-64</td>
<td>1901 FFT Hybrid Mode Interpretation</td>
<td>138</td>
</tr>
<tr>
<td>6-65</td>
<td>Beacon Type Field Interpretation</td>
<td>139</td>
</tr>
<tr>
<td>6-66</td>
<td>Uncoordinated Networks Reported Field Interpretation</td>
<td>139</td>
</tr>
<tr>
<td>6-67</td>
<td>Network Power-Saving Mode Interpretation</td>
<td>140</td>
</tr>
<tr>
<td>6-68</td>
<td>Number of Beacon Slots Interpretation</td>
<td>140</td>
</tr>
<tr>
<td>6-69</td>
<td>Beacon SlotUsage Interpretation</td>
<td>140</td>
</tr>
<tr>
<td>6-70</td>
<td>Beacon Slot ID Interpretation</td>
<td>140</td>
</tr>
<tr>
<td>6-71</td>
<td>Handover-In-Progress (HOIP) Interpretation</td>
<td>141</td>
</tr>
<tr>
<td>6-72</td>
<td>Network Mode Field Interpretation</td>
<td>141</td>
</tr>
<tr>
<td>6-73</td>
<td>BM Capability Field Interpretation</td>
<td>141</td>
</tr>
<tr>
<td>6-74</td>
<td>Reusable SNID Flag Interpretation</td>
<td>142</td>
</tr>
<tr>
<td>6-75</td>
<td>Beacon Management Information Format</td>
<td>142</td>
</tr>
<tr>
<td>6-76</td>
<td>Number of Beacon Entries Interpretation</td>
<td>142</td>
</tr>
<tr>
<td>6-77</td>
<td>Beacon Entry Header Interpretition</td>
<td>143</td>
</tr>
<tr>
<td>6-78</td>
<td>Beacon Entries in Various Beacons</td>
<td>144</td>
</tr>
<tr>
<td>6-79</td>
<td>BELEN Interpretation</td>
<td>146</td>
</tr>
<tr>
<td>6-80</td>
<td>Nonpersistent Schedule BENTRY</td>
<td>146</td>
</tr>
<tr>
<td>6-81</td>
<td>Session Allocation Information Format without Start Time</td>
<td>147</td>
</tr>
<tr>
<td>6-82</td>
<td>Session Allocation Information Format with Start Time</td>
<td>147</td>
</tr>
<tr>
<td>6-83</td>
<td>Start Time Present Flag Interpretation</td>
<td>147</td>
</tr>
<tr>
<td>6-84</td>
<td>Persistent Schedule BENTRY</td>
<td>148</td>
</tr>
<tr>
<td>6-85</td>
<td>PSCD Interpretation</td>
<td>148</td>
</tr>
<tr>
<td>6-86</td>
<td>CSCD Interpretation</td>
<td>149</td>
</tr>
<tr>
<td>6-87</td>
<td>Regions BENTRY</td>
<td>150</td>
</tr>
<tr>
<td>6-88</td>
<td>Region Type (RT) Interpretation</td>
<td>151</td>
</tr>
<tr>
<td>6-89</td>
<td>MAC Address BENTRY</td>
<td>151</td>
</tr>
<tr>
<td>6-90</td>
<td>Discover BENTRY</td>
<td>151</td>
</tr>
<tr>
<td>6-91</td>
<td>Discovered Info BENTRY</td>
<td>152</td>
</tr>
<tr>
<td>6-92</td>
<td>Proxy Networking Capability Interpretation</td>
<td>153</td>
</tr>
<tr>
<td>6-93</td>
<td>Backup BM Capability Interpretation</td>
<td>153</td>
</tr>
<tr>
<td>6-94</td>
<td>BM Status</td>
<td>153</td>
</tr>
<tr>
<td>6-95</td>
<td>PBM Status</td>
<td>153</td>
</tr>
<tr>
<td>6-96</td>
<td>Backup BM Status</td>
<td>154</td>
</tr>
<tr>
<td>6-97</td>
<td>Beacon Period Start Time Offset BENTRY</td>
<td>154</td>
</tr>
<tr>
<td>6-98</td>
<td>Encryption Key Change BENTRY</td>
<td>154</td>
</tr>
<tr>
<td>6-99</td>
<td>KCCD Interpretation</td>
<td>155</td>
</tr>
<tr>
<td>Table 6-151—Beacon Management Information Format</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>Table 6-152—Number of Beacon Entries Interpretation</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>Table 6-153—Beacon Entry Header Interpretation</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>Table 6-154—BELEN Interpretation</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>Table 6-155—Change SNID_Ext BENTRY</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Table 6-156—Next Beacon Schedule BENTRY</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Table 6-157—Stay Awake List BENTRY</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Table 6-158—TDMA Clock Reference BENTRY</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Table 6-159—PRS Signaling BENTRY</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Table 6-160—CX Change Channel Management Message</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Table 6-161—Channel Field for CX Change Channel Management Message</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>Table 6-162—CC_BM_APPPOINT.request Message</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>Table 6-163—CC_BM_APPPOINT.confirm Message</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>Table 6-164—CC_BACKUP_APPPOINT.request Message</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>Table 6-165—CC_BACKUP_APPPOINT.confirm Message</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>Table 6-166—CC_LINK_INFO.confirm Message</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>Table 6-167—Format of GlobalLinkInfo[] Field</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>Table 6-168—CC_HANDOVER.request Message</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>Table 6-169—CC_HANDOVER.confirm Message</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>Table 6-170—CC_HANDOVER_INFO.indication Message</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>Table 6-171—Format of STA_Info[] Field</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Table 6-172—CC_DISCOVER_LIST.confirm Message</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>Table 6-173—Format of StationInfo[]</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>Table 6-174—Format of NetworkInfo[]</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>Table 6-175—CC_LINK_NEW.request Message</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>Table 6-176—CC_LINK_NEW.confirm Message</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Table 6-177—CC_LINK_MOD.request Message</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>Table 6-178—CC_LINK_MOD.confirm Message</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>Table 6-179—CC_LINK_SQZ.request Message</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>Table 6-180—CC_LINK_SQZ.confirm Message</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>Table 6-181—CC_LINK_REL.request Message</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>Table 6-182—CC_LINK_REL.indication Message</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>Table 6-183—CC_DETECT_REPORT.request Message</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>Table 6-184—CC_DETECT_REPORT.confirm Message</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>Table 6-185—Format of GLIDInfo()</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>Table 6-186—CC_WHO_RU.request Message</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Table 6-187—CC_WHO_RU.confirm Message</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>Table 6-188—CC_ASSOC.request Message</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>Table 6-189—CC_ASSOC.confirm Message</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>Table 6-190—Result Field Interpretation</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>Table 6-191—Lease Time Field</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Table 6-192—CC_LEAVE.request Message</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Table 6-193—CC_LEAVE.indication Message</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Table 6-194—CC_SET_TEI_MAP.indication Message</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Table 6-195—Mode Field Interpretation</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Table 6-196—CC_RELAY.request Message</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Table 6-197—CC_RELAY.indication Message</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Table 6-198—CC_BEACON_RELIABILITY.confirm Message</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>Table 6-199—CC_ALLOC_MOVE.request Message</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>Table 6-200—CC_ALLOC_MOVE.confirm Message</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>Table 6-201—CC_ACCESS_NEW.request Message</td>
<td>223</td>
<td></td>
</tr>
</tbody>
</table>
Table 6-202—CC_ACCESS_NEW.confirm Message ... 224
Table 6-203—CC_ACCESS_NEW.indication Message .. 225
Table 6-204—CC_ACCESS_NEW.response Message .. 226
Table 6-205—CC_ACCESS_REL.request Message ... 226
Table 6-206—CC_ACCESS_REL.confirm Message .. 227
Table 6-207—CC_ACCESS_REL.indication Message .. 227
Table 6-208—CC_ACCESS_REL.response Message .. 227
Table 6-209—CC_DCPP.indication Message ... 228
Table 6-210—CC_HP1_DET.confirm Message ... 228
Table 6-211—CC_BLE_UPDATE.indication Message ... 229
Table 6-212—CC_BCAST_REPEAT.indication Message ... 229
Table 6-213—CC_MH_LINK_NEW.request Message ... 229
Table 6-214—CC_ISP_DetectionReport.indication Message ... 232
Table 6-215—ISPSTA... 232
Table 6-216—ISPSTW... 232
Table 6-217—ISPSTG... 232
Table 6-218—Out-of-Sync Sequence format.. 233
Table 6-219—ISPSTA... 233
Table 6-220—ISPSTW... 233
Table 6-221—ISPSTG... 234
Table 6-222—CC_ISP_ReSyncTransmission.request Message .. 234
Table 6-223—CP_PROXY_APPOINT.request Message ... 235
Table 6-224—ReqType.. 235
Table 6-225—HSTA State .. 236
Table 6-226—CP_PROXY_APPOINT.confirm Message ... 236
Table 6-227—Result.. 236
Table 6-228—PH_PROXY_APPOINT.indication Message ... 237
Table 6-229—NN_INL.request and NN_INL.confirm Message .. 238
Table 6-230—NN_NEW_NET.request Message ... 240
Table 6-231—NN_NEW_NET.confirm Message ... 241
Table 6-232—Format of Information Field When Result = 0x00 (Successful) 241
Table 6-233—Format of Information Field When Result = 0x01 (Unsuccessful SNID) 242
Table 6-234—Format of Information Field When Result = 0x02 (Unsuccessful SlotID) ... 242
Table 6-235—NN_NEW_NET.indication Message ... 243
Table 6-236—NN_ADD_ALLOC.request Message .. 243
Table 6-237—NN_ADD_ALLOC.confirm Message .. 243
Table 6-238—NN_ADD_ALLOC.indication Message .. 244
Table 6-239—NN_REL_ALLOC.request Message ... 245
Table 6-240—NN_REL_ALLOC.confirm Message .. 246
Table 6-241—NN_REL_NET.indication Message ... 247
Table 6-242—CM_UNASSOCIATED_STA.indication Message ... 248
Table 6-243—CM_ENCRYPTED_PAYLOAD.indication message 248
Table 6-244—Payload Encryption Key Select Interpretation ... 249
Table 6-245—BSS Status Interpretation ... 249
Table 6-246—Protocol ID Interpretation .. 250
Table 6-247—CM_ENCRYPTED_PAYLOAD.response Message .. 251
Table 6-248—Result Field Interpretation .. 251
Table 6-249—CM_SET_KEY.request Message ... 252
Table 6-250—Key Type Interpretation ... 253
Table 6-251—CM_SET_KEY.confirm Message ... 253
Table 6-252—CM_GET_KEY.request Message ... 254
| Table 6-253—CM_GET_KEY.confirm Message | 255 |
| Table 6-254—CM_SC_JOIN.request Message | 255 |
| Table 6-255—CM_SC_JOIN.confirm Message | 255 |
| Table 6-256—CM_CHAN_EST.indication Message | 256 |
| Table 6-257—RIFS, RIFS_TwoSym, and G2Sym Interpretation | 259 |
| Table 6-258—FEC Type/Code Rate Interpretation | 260 |
| Table 6-259—Guard Interval Length Interpretation | 260 |
| Table 6-260—CBD_ENC Interpretation | 260 |
| Table 6-261—Interpretation of Modulation Type | 261 |
| Table 6-262—Single Nibble Run Length Interpretation | 261 |
| Table 6-263—Two Nibble Run Length Interpretation | 262 |
| Table 6-264—Single Nibble Run Length Interpretation | 262 |
| Table 6-265—Two Nibble Run Length Interpretation | 262 |
| Table 6-266—Tone Map Update Information | 264 |
| Table 6-267—Amplitude Update Indication | 265 |
| Table 6-268—CM_AMP_MAP.confirm Message | 266 |
| Table 6-269—Bridging Information Response | 266 |
| Table 6-270—Bridging Information Variable Field | 266 |
| Table 6-271—CM_CONN_NEW.request Message | 267 |
| Table 6-272—Format of Traffic Specification (TSPEC) | 267 |
| Table 6-273—Format of Connection Information (CINFO) | 268 |
| Table 6-274—Format of QoS and MAC Parameter Field in the TSPEC | 269 |
| Table 6-275—QoS and MAC Parameter Fields Exchanged Between HLE and CM, and Between CMs | 269 |
| Table 6-276—Additional QoS and MAC Parameter Fields Exchanged Between Two CMs | 272 |
| Table 6-277—QoS and MAC Parameter Fields Between CM and BM | 272 |
| Table 6-278—Format of the Body of Connection Descriptor | 274 |
| Table 6-279—Format of the Body of Vendor-Specific MAC and QoS Parameter | 274 |
| Table 6-280—CM_CONN_NEW.confirm Message | 275 |
| Table 6-281—CM_CONN_REL.indication Message | 276 |
| Table 6-282—CM_CONN_REL.response Message | 277 |
| Table 6-283—CM_CONN_MOD.request Message | 277 |
| Table 6-284—CM_CONN_MOD.confirm Message | 277 |
| Table 6-285—CM_CONN_INFO.request Message | 278 |
| Table 6-286—CM_CONN_INFO.confirm Message | 278 |
| Table 6-287—Format of Connlnfo | 279 |
| Table 6-288—CM_STA_CAP.confirm Message | 279 |
| Table 6-289—CM_NW_INFO.confirm Message | 281 |
| Table 6-290—NWINFO Field Format | 281 |
| Table 6-291—CM_GET_BEACON.request Message | 282 |
| Table 6-292—CM_HFID.request Message | 282 |
| Table 6-293—CM_HFID.confirm Message | 283 |
| Table 6-294—CM_MME_ERROR.indication Message | 283 |
| Table 6-295—CM_NW_STATS.confirm Field Format | 284 |
| Table 6-296—CM_LINK_STATS.request Message | 284 |
| Table 6-297—CM_LINK_STATS.confirm Message | 285 |
| Table 6-298—LinkStats Field Format for Transmit MFS | 285 |
| Table 6-299—LinkStats Field Format for Receive MFS | 287 |
| Table 6-300—CM_ROUTE_INFO.confirm Message | 288 |
| Table 6-301—CM CM_UNREACHABLE.indication | 289 |
| Table 6-302—CM_CONN_NEW.request Message | 289 |
| Table 6-303—CM_EXTENDEDTONEMASK.request Message | 290 |
Table 6-406—Two Nibble Run Length Interpretation ... 345
Table 6-407—Single Nibble Run Length Interpretation .. 346
Table 6-408—Two Nibble Run Length Interpretation ... 346
Table 6-409—Tone Map Update Information .. 348
Table 6-410—Amplitude Update Indication ... 349
Table 6-411—GE_AMP_MAP.confirm ... 349
Table 6-412—GE_GET_BEACON.request .. 350
Table 6-413—Bridging Information Response ... 350
Table 6-414—Bridging Information Variable Field ... 351
Table 6-415—GE_CHANGE_SW_VERSION.request ... 351
Table 6-416—GE_CHANGE_SW_VERSION.confirm ... 351
Table 6-417—GE_CHAN_USE.request .. 352
Table 6-418—GE_LINK_STATS.confirm ... 353
Table 6-419—GE_XMIT_TEST_MODE.request ... 354
Table 6-420—GE_XMIT_TEST_MODE.confirm ... 354
Table 6-421—GE_XMIT_TEST_MODE.confirm ... 354
Table 6-422—GE_COEXALLOC.request/confi rm ... 354
Table 6-423—GE_HE_STA_POW_SAVE.request ... 355
Table 6-424—GE_STA_STA_POW_SAVE.indication MME ... 355
Table 6-425—GE_CPE_POW_SAVE.request .. 356
Table 6-426—GE_CPE_POW_SAVE.confirm ... 356
Table 6-427—GE_ISP_MODE.indication Message .. 357
Table 6-428—ISPMODE ... 357
Table 6-429—GE_ISP_STATUS.indication ... 357
Table 6-430—ISPSTW ... 358
Table 6-431—ISPSTO ... 358
Table 6-432—ISPSTG ... 358
Table 6-433—Out-of-Sync Sequence Format ... 358
Table 6-434—ISPSTA ... 359
Table 6-435—ISPSTW ... 359
Table 6-436—ISPSTG ... 359
Table 6-437—GE_EXTENDEDTONEMASK.request .. 360
Table 6-438—GE_EXTENDEDTONEMASK.confirm ... 360
Table 6-439—Vendor-Specific MME Fields .. 361
Table 6-440—Frame Type (FT) Field ... 363
Table 6-441—Wavelet Data Body Structure Information .. 365
Table 6-442—NetMode Field Values ... 370
Table 6-443—Beacon Mode Field Values .. 370
Table 6-444—NetMode Field Values ... 370
Table 6-445—Value of Subframe Header Fields (Beacon Frame) .. 370
Table 6-446—Allocation Types ... 372
Table 6-447—Allocation Types and Valid Link ID Values .. 372
Table 6-448—Information IDs for EIBs ... 373
Table 6-449—ISP Info IDs .. 375
Table 6-450—Access State Field ... 375
Table 6-451—IIV Field ... 377
Table 6-452—Access State Subfield .. 378
Table 6-453—Extra Indication Field .. 381
Table 6-454—Value of Subframe Header Fields (CER Frame) .. 382
Table 6-455—Wavelet Modulation Types .. 383
Table 6-456—Wavelet FEC Types .. 384
Table 6-507—Value of Subframe Header Fields (Single MSDU Data Frame).............................. 386
Table 6-508—Values of Subframe Header Fields (Concatenated MSDUs Data Frame).............. 387
Table 6-509—Value of Subframe Header Fields (Fragmented MSDU Data Frame) 389
Table 6-510—DBSI Values (Fragmented MSDU Data Frame).. 389
Table 6-511—RTS Flag Interpretation ... 391
Table 6-512—Management Message Subtypes .. 392
Table 6-513—Bandwidth Reservation Request ... 393
Table 6-514—Bandwidth Reservation Response ... 395
Table 6-515—Bandwidth Reservation Response Result Code ... 396
Table 6-516—Reservation Parameters .. 397
Table 6-517—Bandwidth Release Request ... 397
Table 6-518—Bandwidth Release Response ... 398
Table 6-519—Bandwidth Release Response Result Code .. 398
Table 6-520—Schedule Aging Notice ... 399
Table 6-521—Schedule Aging Notice Response ... 399
Table 6-522—Authentication Request ... 400
Table 6-523—Authentication Response .. 400
Table 6-524—Authentication Response Result Code ... 401
Table 6-525—Challenge Text Request ... 402
Table 6-526—Challenge Text Response .. 402
Table 6-527—Wavelet Disassociation Frame Body ... 403
Table 6-528—ReasonCodes ... 403
Table 6-529—Wavelet Association Request Frame Body ... 404
Table 6-530—Association Response Frame Body ... 405
Table 6-531—Reassociation Request Frame Body ... 405
Table 6-532—Reassociation Response Frame Body .. 405
Table 6-533—StatusCodes ... 406
Table 6-534—Deauthentication Notice .. 407
Table 6-535—Channel Estimation Region Request .. 408
Table 6-536—Channel Estimation Region Response .. 408
Table 6-537—Channel Estimation Region Release ... 409
Table 6-538—Invalid TMI Notification .. 409
Table 6-539—Probe Request .. 410
Table 6-540—Probe Response .. 410
Table 6-541—NEK Distribution Indication .. 411
Table 6-542—NEK Distribution Confirmation ... 412
Table 6-543—EAPOL Message ... 412
Table 6-544—ISP Information Indication .. 413
Table 6-545—ISP Information Type IDs ... 413
Table 6-546—Data Body of ISP Detection Report .. 413
Table 6-547—Access State Field .. 414
Table 6-548—Flags Field .. 415
Table 6-549—Element of Out-of-Sync Sequence List Field .. 415
Table 6-550—Access State Subfield .. 416
Table 6-551—Data Body of Start Resync ISP Management Frame 416
Table 6-552—Data Body of Resync Finished ISP Management Frame 417
Table 6-553—Element of Out-of-Sync Sequence List Field .. 418
Table 6-554—Data Body of Resync Detected ISP Management Frame 419
Table 6-555—Data Body of Resync Transmission Request ISP Management Frame 419
Table 6-556—Data Body of Network Status Request ISP Management Frame 419
Table 6-557—Data Body of Change Frequency ISP Management Frame 420
Table P-10—The Mapping of Traffic Type on to 1901 Coexistence Priority Classification 1458
Table P-11—Signals that Each System Executes Resynchronization .. 1460
Table P-12—Available D-Slots ... 1469
Table P-13—Tacit Use of D-Slots by S-Slot Systems When Only CXP Systems Are Present 1471
Table P-14—Available D-Slots (3) ... 1471
Table P-15—Mandatory and Optional Functions .. 1475
Table P-16—Parameters for Function A ... 1476
Table P-17—Parameters for Function B ... 1476
Table P-18—Parameters for Function C ... 1477
Table P-19—Parameters for Function F ... 1478
Table P-20—Parameters for Function G .. 1479
Table P-21—Parameters for Function H .. 1480
Table P-22—In-Home System S-Slot Request State Transition Table .. 1484
Table V-1—An Example of Masked Carriers ... 1534
Table V-2—An Example of PSD Limits ... 1535
1 Overview

1.1 Scope
The project defines a standard for high-speed (>100 Mbps at the physical layer) communication devices via electric power lines, so-called broadband over power line (BPL) devices. This standard uses transmission frequencies below 100 MHz. It is usable by all classes of BPL devices, including BPL devices used for the first-mile/last-mile connection (<1500 m to the premise) to broadband services as well as BPL devices used in buildings for local area networks (LANs), smart energy applications, transportation platform (vehicle) applications, and other data distribution (<100 m between devices). This standard focuses on the balanced and efficient use of the power line communications channel by all classes of BPL devices, defining detailed mechanisms for coexistence and interoperability between different BPL devices, and assuring that desired bandwidth and quality of service may be delivered. The standard addresses the necessary security questions to provide privacy of communications between users and allow the use of BPL for security-sensitive services. It is limited to the physical layer and the medium access sublayer of the data link layer, as defined by the International Organization for Standardization (ISO) Open Systems Interconnection (OSI) Basic Reference Model.

1.2 Purpose
New modulation techniques offer the possibility to use the power lines for high-speed communications. This new high-speed medium is open and locally shared by several BPL devices. Without an independent, openly defined standard, BPL devices serving different applications will conflict with one another and provide unacceptable service to all parties. The standard will provide a minimum implementation subset that allows fair coexistence of the BPL devices. The full implementation will provide interoperability among BPL devices, as well as interoperability with other networking protocols, such as bridging for seamless interconnection via IEEE Std 802.1X™-2010.1 It is also the intent of this effort to progress quickly toward a robust standard so power

1 Information on references can be found in Clause 2.
line applications may begin to impact the marketplace. The standard also complies with electromagnetic compatibility (EMC) limits set by national regulators, so as to enable successful coexistence with wireless and telecommunications systems.

1.3 Protocols
The defined protocols provide connectivity over power lines to automatic machinery, equipment, or stations that are connected to power lines, including:

- Functions and services required by an IEEE-1901-conformant device to operate within networks as well as the aspects of station portability (relocation) within those networks.
- Medium access control (MAC) procedures to support the asynchronous MAC service data unit (MSDU) delivery services.
- Physical layer (PHY) signaling techniques and interface functions that are controlled by the IEEE 1901 MAC.
- Operation of an IEEE-1901-conformant device within a power line network that coexists with multiple other overlapping IEEE 1901 power line networks, automatically and without user intervention. Two modes of coexistence operation are defined:
 1) Inter-system protocol (ISP) allows IEEE-1901-conformant devices, ITU-T G.hn devices, and low-rate wideband service devices to coexist.
- Requirements and procedures to enable security, data integrity and confidentiality of user information being transferred over the power line and authentication of IEEE-1901-conformant devices.
- Mechanisms for dynamic notching (DN), dynamic frequency selection (DFS), and transmit power control (TPC).
- Mechanisms for shaping the power spectral density (PSD).
- MAC procedures to support network applications with quality-of-service (QoS) requirements.
- Complete set of variables that govern the conditional requirements of this standard (see Annex A).

1.4 Overview of annexes
This subclause lists all of the annexes contained in this standard:

- Annex B (normative) Optional filters for the bandpass wavelet OFDM: contains some normative tables that were placed in the annexes because of their size.
- Annex C (informative) Beacon-triggered TDMA scheduling examples: provides examples of beacon-triggered, time division multiple access (TDMA) scheduling used for different types of traffic streams.
- Annex D (informative) RSNA reference implementations and test vectors: provides test vectors for robust security network association (RSNA) implementation for pseudo-random function (PRF) and counter mode (CTR) with CBC message authentication code (CBC-MAC) protocol (CCMP).
- Annex E (informative) Integration function: describes an integration service between a non–IEEE-802.3 network and a IEEE 1901 portal and comparison with IEEE 802.1 bridging functionality.
— Annex F (informative) Channel and noise analysis and models for BPL systems: provides informative material regarding BPL channel and noise models.

— Annex G (informative) Priority mapping: provides the recommended mapping between user priority identifiers (IDs) and user applications.

— Annex H (informative) DSN in-home security—user experiences (UEs): describes the typical user experience with IEEE 1901 station (STA) in a basic service set (BSS) implementing a device-based security network (DSN).

— Annex I (informative) DSN in-home security—state transition diagrams: describes a state machine for DSN in-home security and key management.

— Annex J (informative) DSN in-home security—test vectors: provides test vectors for DSN in-home implementation for hashed network membership key (NMK), hashed network identifier (NID) and NMK provisioning management message entry (MME) using device access key (DAK).

— Annex K (informative) Bridging and routing that use 1901 FFT stations as one or more of their portals: provides an explanation and examples for IEEE 1901 end-to-end bridging and station-to-station routing in both in-home and access segments.

— Annex L (informative) FFT parameters: describes FFT parameters for PHY and MAC and multiple networks scenarios for different network modes.

— Annex M (informative) 1901 FFT and TIA-1113 coexistence: describes coexistence between IEEE 1901 FFT STAs and legacy TIA-1113 STAs.

— Annex N (informative) Fair share between 1901 access and 1901 in-home using the same PHY: describes fair medium sharing between the IEEE 1901 access network and the IEEE 1901 in-home network, which are using the same PHY.

— Annex O (informative) 1901 access and 1901 in-home synchronization and interoperability: describes a method for IEEE 1901 access and IEEE 1901 in-home to synchronize on the same PHY scheme for achieving full interoperability.

— Annex P (normative) Optional coexistence protocol: specifies an optional coexistence protocol (CXP) between IEEE-1901-conformant systems and systems that implement only CXP but are not IEEE 1901-conformant.

— Annex Q (informative) Resource request and allocation: describes coexistence resource request and allocation between in-home systems and between in-home systems and access systems.

— Annex S (informative) Examples of the coexistence protocol handling hidden node systems: provides examples for coexistence protocol handling of hidden node systems.

— Annex T (informative) Flowcharts of CX Protocol: provides examples of detailed flowcharts for the CXP.

— Annex U (informative) Zero-cross point detection circuit: describes a recommended zero-cross point detection circuit.

— Annex V (informative) Transmit spectrum mask example: shows a transmit spectrum mask example of the upper bound of the power spectral density (PSD).

— Annex W (informative) CDCF signals: description and definition of CXP’s commonly distributed coordination function (CDCF) signal generation and reception

2 Normative references

The following referenced documents and URLs are indispensable for the application of this document (i.e., they must be understood and used, so each referenced document is cited in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

FIPS SP 800-38A:2001, Recommendation for Block Cipher Modes of Operation—Methods and Techniques.

IEEE Std 802™-2001, IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture.5,6,7

IEEE Std 802.1ad™, IEEE Standard for Local and Metropolitan Area Networks—Virtual Bridged Local Area Networks, Amendment 4: Provider Bridges.

IEEE Std 802.1D™-2004, IEEE Standard for Local and Metropolitan Area Networks Media Access Control (MAC) Bridges.

2 FIPS publications are available from the National Technical Information Service (NTIS), U.S. Dept. of Commerce, 5285 Port Royal Rd., Springfield, VA 22161, USA (http://www.ntis.org/).

4 IEC publications are available from the International Electrotechnical Commission, Case Postale 131, 3 rue de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.

5 The IEEE standards or products referred to in this clause are trademarks owned by the Institute of Electrical and Electronics Engineers, Incorporated.

6 IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854, USA (http://standards.ieee.org/).

7 “IEEE” and “802” are registered trademarks in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics Engineers, Incorporated.